Given an array of integers nums
sorted in non-decreasing order, find the starting and ending position of a given target
value.
If target
is not found in the array, return [-1, -1]
.
You must write an algorithm with O(log n)
runtime complexity.
Example 1:
Input: nums = [5,7,7,8,8,10], target = 8 Output: [3,4]
Example 2:
Input: nums = [5,7,7,8,8,10], target = 6 Output: [-1,-1]
Example 3:
Input: nums = [], target = 0 Output: [-1,-1]
Constraints:
0 <= nums.length <= 105
-109 <= nums[i] <= 109
nums
is a non-decreasing array.-109 <= target <= 109
Binary search.
Template 1:
boolean check(int x) {}
int search(int left, int right) {
while (left < right) {
int mid = (left + right) >> 1;
if (check(mid)) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
Template 2:
boolean check(int x) {}
int search(int left, int right) {
while (left < right) {
int mid = (left + right + 1) >> 1;
if (check(mid)) {
left = mid;
} else {
right = mid - 1;
}
}
return left;
}
class Solution:
def searchRange(self, nums: List[int], target: int) -> List[int]:
l = bisect_left(nums, target)
r = bisect_left(nums, target + 1)
return [-1, -1] if l == len(nums) or l >= r else [l, r - 1]
class Solution {
public int[] searchRange(int[] nums, int target) {
int l = search(nums, target);
int r = search(nums, target + 1);
return l == nums.length || l >= r ? new int[]{-1, -1} : new int[]{l, r - 1};
}
private int search(int[] nums, int target) {
int left = 0, right = nums.length;
while (left < right) {
int mid = (left + right) >>> 1;
if (nums[mid] >= target) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
}
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
int l = lower_bound(nums.begin(), nums.end(), target) - nums.begin();
int r = lower_bound(nums.begin(), nums.end(), target + 1) - nums.begin();
if (l == nums.size() || l >= r) return {-1, -1};
return {l, r - 1};
}
};
/**
* @param {number[]} nums
* @param {number} target
* @return {number[]}
*/
var searchRange = function (nums, target) {
function search(target) {
let left = 0,
right = nums.length;
while (left < right) {
const mid = (left + right) >> 1;
if (nums[mid] >= target) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
const l = search(target);
const r = search(target + 1);
return l == nums.length || l >= r ? [-1, -1] : [l, r - 1];
};
func searchRange(nums []int, target int) []int {
search := func(target int) int {
left, right := 0, len(nums)
for left < right {
mid := (left + right) >> 1
if nums[mid] >= target {
right = mid
} else {
left = mid + 1
}
}
return left
}
l, r := search(target), search(target+1)
if l == len(nums) || l >= r {
return []int{-1, -1}
}
return []int{l, r - 1}
}
impl Solution {
pub fn search_range(nums: Vec<i32>, target: i32) -> Vec<i32> {
let n = nums.len();
let search = |target| {
let mut left = 0;
let mut right = n;
while left < right {
let mid = left + (right - left) / 2;
if nums[mid] < target {
left = mid + 1;
} else {
right = mid;
}
}
left
};
let start = search(target);
let end = search(target + 1) - 1;
if start >= n || nums[start] != target {
return vec![-1, -1];
}
vec![start as i32, end as i32]
}
}
function searchRange(nums: number[], target: number): number[] {
function search(target) {
let left = 0,
right = nums.length;
while (left < right) {
const mid = (left + right) >> 1;
if (nums[mid] >= target) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
const l = search(target);
const r = search(target + 1);
return l == nums.length || l >= r ? [-1, -1] : [l, r - 1];
}
function searchRange(nums: number[], target: number): number[] {
const n = nums.length;
const search = (target: number) => {
let left = 0;
let right = n;
while (left < right) {
const mid = (left + right) >>> 1;
if (nums[mid] < target) {
left = mid + 1;
} else {
right = mid;
}
}
return left;
};
const start = search(target);
const end = search(target + 1) - 1;
if (nums[start] !== target) {
return [-1, -1];
}
return [start, end];
}