You are given two strings s
and p
where p
is a subsequence of s
. You are also given a distinct 0-indexed integer array removable
containing a subset of indices of s
(s
is also 0-indexed).
You want to choose an integer k
(0 <= k <= removable.length
) such that, after removing k
characters from s
using the first k
indices in removable
, p
is still a subsequence of s
. More formally, you will mark the character at s[removable[i]]
for each 0 <= i < k
, then remove all marked characters and check if p
is still a subsequence.
Return the maximum k
you can choose such that p
is still a subsequence of s
after the removals.
A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.
Example 1:
Input: s = "abcacb", p = "ab", removable = [3,1,0] Output: 2 Explanation: After removing the characters at indices 3 and 1, "abcacb" becomes "accb". "ab" is a subsequence of "accb". If we remove the characters at indices 3, 1, and 0, "abcacb" becomes "ccb", and "ab" is no longer a subsequence. Hence, the maximum k is 2.
Example 2:
Input: s = "abcbddddd", p = "abcd", removable = [3,2,1,4,5,6] Output: 1 Explanation: After removing the character at index 3, "abcbddddd" becomes "abcddddd". "abcd" is a subsequence of "abcddddd".
Example 3:
Input: s = "abcab", p = "abc", removable = [0,1,2,3,4] Output: 0 Explanation: If you remove the first index in the array removable, "abc" is no longer a subsequence.
Constraints:
1 <= p.length <= s.length <= 105
0 <= removable.length < s.length
0 <= removable[i] < s.length
p
is a subsequence ofs
.s
andp
both consist of lowercase English letters.- The elements in
removable
are distinct.
Binary search.
Template 1:
boolean check(int x) {}
int search(int left, int right) {
while (left < right) {
int mid = (left + right) >> 1;
if (check(mid)) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
Template 2:
boolean check(int x) {}
int search(int left, int right) {
while (left < right) {
int mid = (left + right + 1) >> 1;
if (check(mid)) {
left = mid;
} else {
right = mid - 1;
}
}
return left;
}
class Solution:
def maximumRemovals(self, s: str, p: str, removable: List[int]) -> int:
def check(k):
i = j = 0
ids = set(removable[:k])
while i < m and j < n:
if i not in ids and s[i] == p[j]:
j += 1
i += 1
return j == n
m, n = len(s), len(p)
left, right = 0, len(removable)
while left < right:
mid = (left + right + 1) >> 1
if check(mid):
left = mid
else:
right = mid - 1
return left
class Solution {
public int maximumRemovals(String s, String p, int[] removable) {
int left = 0, right = removable.length;
while (left < right) {
int mid = (left + right + 1) >> 1;
if (check(s, p, removable, mid)) {
left = mid;
} else {
right = mid - 1;
}
}
return left;
}
private boolean check(String s, String p, int[] removable, int mid) {
int m = s.length(), n = p.length(), i = 0, j = 0;
Set<Integer> ids = new HashSet<>();
for (int k = 0; k < mid; ++k) {
ids.add(removable[k]);
}
while (i < m && j < n) {
if (!ids.contains(i) && s.charAt(i) == p.charAt(j)) {
++j;
}
++i;
}
return j == n;
}
}
function maximumRemovals(s: string, p: string, removable: number[]): number {
let left = 0,
right = removable.length;
while (left < right) {
let mid = (left + right + 1) >> 1;
if (isSub(s, p, new Set(removable.slice(0, mid)))) {
left = mid;
} else {
right = mid - 1;
}
}
return left;
}
function isSub(str: string, sub: string, idxes: Set<number>): boolean {
let m = str.length,
n = sub.length;
let i = 0,
j = 0;
while (i < m && j < n) {
if (!idxes.has(i) && str.charAt(i) == sub.charAt(j)) {
++j;
}
++i;
}
return j == n;
}
class Solution {
public:
int maximumRemovals(string s, string p, vector<int>& removable) {
int left = 0, right = removable.size();
while (left < right) {
int mid = left + right + 1 >> 1;
if (check(s, p, removable, mid)) {
left = mid;
} else {
right = mid - 1;
}
}
return left;
}
bool check(string s, string p, vector<int>& removable, int mid) {
int m = s.size(), n = p.size(), i = 0, j = 0;
unordered_set<int> ids;
for (int k = 0; k < mid; ++k) {
ids.insert(removable[k]);
}
while (i < m && j < n) {
if (ids.count(i) == 0 && s[i] == p[j]) {
++j;
}
++i;
}
return j == n;
}
};
func maximumRemovals(s string, p string, removable []int) int {
check := func(k int) bool {
ids := make(map[int]bool)
for _, r := range removable[:k] {
ids[r] = true
}
var i, j int
for i < len(s) && j < len(p) {
if !ids[i] && s[i] == p[j] {
j++
}
i++
}
return j == len(p)
}
left, right := 0, len(removable)
for left < right {
mid := (left + right + 1) >> 1
if check(mid) {
left = mid
} else {
right = mid - 1
}
}
return left
}
use std::collections::HashSet;
impl Solution {
pub fn maximum_removals(s: String, p: String, removable: Vec<i32>) -> i32 {
let m = s.len();
let n = p.len();
let s = s.as_bytes();
let p = p.as_bytes();
let check = |k| {
let mut i = 0;
let mut j = 0;
let ids: HashSet<i32> = removable[..k].iter().cloned().collect();
while i < m && j < n {
if !ids.contains(&(i as i32)) && s[i] == p[j] {
j += 1;
}
i += 1;
}
j == n
};
let mut left = 0;
let mut right = removable.len();
while left + 1 < right {
let mid = left + (right - left) / 2;
if check(mid) {
left = mid;
} else {
right = mid;
}
}
if check(right) {
return right as i32;
}
left as i32
}
}