-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathdataloader.py
363 lines (291 loc) · 11.4 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import os.path as osp
import tensorflow as tf
import pandas as pd
import numpy as np
import cv2
from dataset.annotate import draw, transform
from yacs.config import CfgNode as CN
from yolov4.tf.dataset import cut_out
d1_val = ['d1_02_06_2020', 'd1_02_16_2020', 'd1_02_22_2020']
d1_test = ['d1_03_03_2020', 'd1_03_19_2020', 'd1_03_23_2020', 'd1_03_27_2020', 'd1_03_28_2020', 'd1_03_30_2020', 'd1_03_31_2020']
d2_val = ['d2_02_03_2021', 'd2_02_05_2021']
d2_test = ['d2_03_03_2020', 'd2_02_10_2021', 'd2_02_03_2021_2']
def get_splits(path='./dataset/labels.pkl', dataset='d1', split='train'):
assert dataset in ['d1', 'd2'], "dataset must be either 'd1' or 'd2'"
assert split in [None, 'train', 'val', 'test'], "split must be in [None, 'train', 'val', 'test']"
if dataset == 'd1':
val_folders, test_folders = d1_val, d1_test
else:
val_folders, test_folders = d2_val, d2_test
df = pd.read_pickle(path)
df = df[df.img_folder.str.contains(dataset)]
splits = {}
splits['val'] = df[np.isin(df.img_folder, val_folders)]
splits['test'] = df[np.isin(df.img_folder, test_folders)]
splits['train'] = df[np.logical_not(np.isin(df.img_folder, val_folders + test_folders))]
if split is None:
return splits
else:
return splits[split]
def preprocess(path, xy, cfg, bbox_to_gt_func, split='train', return_xy=False):
path = path.numpy().decode('utf-8')
xy = xy.numpy()
img = cv2.imread(path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # yolov4 tf convention
img = img / 255. # yolov4 tf convention
if split == 'train' and np.random.uniform() < cfg.aug.overall_prob:
transformed = False
if cfg.aug.flip_lr_prob and np.random.uniform() < cfg.aug.flip_lr_prob:
if not transformed:
xy, img, M = transform(xy, img)
transformed = True
img, xy = flip(img, xy, direction='lr')
if cfg.aug.flip_ud_prob and np.random.uniform() < cfg.aug.flip_ud_prob:
if not transformed:
xy, img, M = transform(xy, img)
transformed = True
img, xy = flip(img, xy, direction='ud')
if cfg.aug.rot_prob and np.random.uniform() < cfg.aug.rot_prob:
if not transformed:
xy, img, M = transform(xy, img)
transformed = True
angles = np.arange(-180, 180, step=cfg.aug.rot_step)
angle = angles[np.random.randint(len(angles))]
img, xy = rotate(img, xy, angle, darts_only=True)
if cfg.aug.rot_small_prob and np.random.uniform() < cfg.aug.rot_small_prob:
angle = np.random.uniform(-cfg.aug.rot_small_max, cfg.aug.rot_small_max)
img, xy = rotate(img, xy, angle, darts_only=False) # rotate cal points too
if cfg.aug.jitter_prob and np.random.uniform() < cfg.aug.jitter_prob:
h, w = img.shape[:2]
jitter = cfg.aug.jitter_max * w
tx = np.random.uniform(-1, 1) * jitter
ty = np.random.uniform(-1, 1) * jitter
img, xy = translate(img, xy, tx, ty)
if cfg.aug.warp_prob and np.random.uniform() < cfg.aug.warp_prob:
if not transformed:
xy, img, M = transform(xy, img)
M_inv = np.linalg.inv(M)
M_inv[0, 1:3] *= np.random.uniform(0, cfg.aug.warp_rho, 2)
M_inv[1, [0, 2]] *= np.random.uniform(0, cfg.aug.warp_rho, 2)
M_inv[2, 0:2] *= np.random.uniform(0, cfg.aug.warp_rho, 2)
xy, img, _ = transform(xy, img, M=M_inv)
else:
if transformed:
M_inv = np.linalg.inv(M)
xy, img, _ = transform(xy, img, M=M_inv)
if return_xy:
return img, xy
bboxes = get_bounding_boxes(xy, cfg.train.bbox_size)
if split == 'train':
# cutout augmentation
if cfg.aug.cutout_prob and np.random.uniform() < cfg.aug.cutout_prob:
img, bboxes = cut_out([np.expand_dims(img, axis=0), bboxes])
img = img[0]
gt = bbox_to_gt_func(bboxes)
gt = [item.squeeze() for item in gt]
return (img, *gt)
def align_board(img, xy):
center = np.mean(xy[:4, :2], axis=0)
angle = 9 - np.arctan((center[0] - xy[0, 0]) / (center[1] - xy[0, 1])) / np.pi * 180
img, xy = rotate(img, xy, angle, darts_only=False)
return img, xy
def rotate(img, xy, angle, darts_only=True):
h, w = img.shape[:2]
center = np.mean(xy[:4, :2], axis=0)
M = cv2.getRotationMatrix2D((center[0]*w, center[1]*h), angle, 1)
img = cv2.warpAffine(img, M, (w, h))
vis = xy[:, 2:]
xy = xy[:, :2]
if darts_only:
if xy.shape[0] > 4:
xy_darts = xy[4:]
xy_darts -= center
xy_darts = np.matmul(M[:, :2], xy_darts.T).T
xy_darts += center
xy[4:] = xy_darts
else:
xy -= center
xy = np.matmul(M[:, :2], xy.T).T
xy += center
xy = np.concatenate([xy, vis], axis=-1)
return img, xy
def flip(img, xy, direction, darts_only=True):
if direction == 'lr':
img = img[:, ::-1, :] # flip left-right
axis = 0
else:
img = img[::-1, :, :] # flip up-down
axis = 1
center = np.mean(xy[:4, :2], axis=0)
vis = xy[:, 2:]
xy = xy[:, :2]
if darts_only:
if xy.shape[0] > 4:
xy_darts = xy[4:]
xy_darts -= center
xy_darts[:, axis] = -xy_darts[:, axis]
xy_darts += center
xy[4:] = xy_darts
else:
xy -= center
xy[:, axis] = -xy[:, axis]
xy += center
xy = np.concatenate([xy, vis], axis=-1)
return img, xy
def translate(img, xy, tx, ty):
h, w = img.shape[:2]
M = np.array([[1, 0, tx], [0, 1, ty]], dtype=np.float32)
img = cv2.warpAffine(img, M, (w, h))
xy[:, 0] += tx/w
xy[:, 1] += ty/h
return img, xy
def warp_perspective(img, xy, rho):
patch_size = 128
top_point = (32,32)
left_point = (patch_size+32, 32)
bottom_point = (patch_size+32, patch_size+32)
right_point = (32, patch_size+32)
four_points = [top_point, left_point, bottom_point, right_point]
h, w = img.shape[:2]
perturbed_four_points = [
(p[0] + np.random.uniform(-rho, rho), p[1] + np.random.uniform(-rho, rho))
for p in four_points]
M = cv2.getPerspectiveTransform(
np.float32(four_points),
np.float32(perturbed_four_points))
warped_image = cv2.warpPerspective(img, M, (w, h))
vis = xy[:, 2:]
xy = xy[:, :2]
xy *= [[w, h]]
xyz = np.concatenate((xy, np.ones((xy.shape[0], 1))), axis=-1)
xyz = np.matmul(M, xyz.T).T
xy = xyz[:, :2] / xyz[:, 2:]
xy /= [[w, h]]
xy = np.concatenate([xy, vis], axis=-1)
return warped_image, xy
def get_bounding_boxes(xy, size):
xy[((xy[:, 0] - size / 2 <= 0) |
(xy[:, 0] + size / 2 >= 1) |
(xy[:, 1] - size / 2 <= 0) |
(xy[:, 1] + size / 2 >= 1)), -1] = 0
xywhc = []
for i, _xy in enumerate(xy):
if i < 4:
cls = i + 1
else:
cls = 0
if _xy[-1]: # is visible
xywhc.append([_xy[0], _xy[1], size, size, cls])
xywhc = np.array(xywhc)
return xywhc
def set_shapes(img, gt1, gt2, gt3, input_size):
img.set_shape([input_size, input_size, 3])
gt1.set_shape([input_size // 8, input_size // 8, 3, 10])
gt2.set_shape([input_size // 16, input_size // 16, 3, 10])
gt3.set_shape([input_size // 32, input_size // 32, 3, 10])
return img, gt1, gt2, gt3
def set_shapes_tiny(img, gt1, gt2, input_size):
img.set_shape([input_size, input_size, 3])
gt1.set_shape([input_size // 16, input_size // 16, 3, 10])
gt2.set_shape([input_size // 32, input_size // 32, 3, 10])
return img, gt1, gt2
def load_tfds(
cfg,
bbox_to_gt_func,
split='train',
return_xy=False,
batch_size=32,
debug=False):
data = get_splits(cfg.data.labels_path, cfg.data.dataset, split)
img_path = osp.join(cfg.data.path, 'cropped_images', str(cfg.model.input_size))
img_paths = [osp.join(img_path, folder, name) for (folder, name) in zip(data.img_folder, data.img_name)]
xys = np.zeros((len(data), 7, 3)) # third column for visibility
data.xy = data.xy.apply(np.array)
for i, _xy in enumerate(data.xy):
xys[i, :_xy.shape[0], :2] = _xy
xys[i, :_xy.shape[0], 2] = 1
xys = xys.astype(np.float32)
if return_xy:
dtypes = [tf.float32 for _ in range(2)]
else:
if cfg.model.tiny:
dtypes = [tf.float32 for _ in range(3)]
else:
dtypes = [tf.float32 for _ in range(4)]
AUTO = tf.data.experimental.AUTOTUNE if not debug else 1
ds = tf.data.Dataset.from_tensor_slices((img_paths, xys))
ds = ds.shuffle(10000).repeat()
ds = ds.map(lambda path, xy:
tf.py_function(
lambda path, xy: preprocess(path, xy, cfg, bbox_to_gt_func, split, return_xy),
[path, xy], dtypes),
num_parallel_calls=AUTO)
input_size = int(img_path.split('/')[-1])
if not return_xy:
if cfg.model.tiny:
ds = ds.map(lambda img, gt1, gt2:
set_shapes_tiny(img, gt1, gt2, input_size),
num_parallel_calls=AUTO)
else:
ds = ds.map(lambda img, gt1, gt2, gt3:
set_shapes(img, gt1, gt2, gt3, input_size),
num_parallel_calls=AUTO)
ds = ds.batch(batch_size).prefetch(AUTO)
ds = data_generator(iter(ds), len(data), cfg.model.tiny) if not return_xy else ds
return ds
class data_generator():
"""Wrap the tensorflow dataset in a generator so that we can combine
gt into list because that's what the YOLOv4 loss function requires"""
def __init__(self, tfds, n, tiny):
self.tfds = tfds
self.tiny = tiny
self.n = n
def __iter__(self):
return self
def __len__(self):
return self.n
def __next__(self):
if self.tiny:
img, gt1, gt2 = next(self.tfds)
gt = [gt1, gt2]
else:
img, gt1, gt2, gt3 = next(self.tfds)
gt = [gt1, gt2, gt3]
return img, gt
if __name__ == '__main__':
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
tf.random.set_seed(0)
np.random.seed(0)
cfg = CN(new_allowed=True)
cfg.merge_from_file('configs/aug_d2/tiny480_d2_20e_warp.yaml')
from train import build_model
yolo = build_model(cfg)
yolo_dataset_object = yolo.load_dataset('dummy_dataset.txt', label_smoothing=0.)
bbox_to_gt_func = yolo_dataset_object.bboxes_to_ground_truth
ds = load_tfds(
cfg,
bbox_to_gt_func,
split='train',
return_xy=True,
batch_size=1,
debug=True)
# for i, (img, (gt1, gt2)) in enumerate(ds):
# print(i, img.shape)
# print(gt1.shape, gt2.shape)
# img = (img.numpy()[0] * 255.).astype(np.uint8)[:, :, [2, 1, 0]]
# cv2.imshow('', img)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
for img, xy in ds:
img = img[0].numpy()
xy = xy[0].numpy()
img = (img * 255.).astype(np.uint8)
xy = xy[xy[:, -1] == 1, :2]
img = draw(cv2.cvtColor(img, cv2.COLOR_RGB2BGR), xy, cfg, False, True)
cv2.imshow('', img)
cv2.waitKey(0)
cv2.destroyAllWindows()