Skip to content

Latest commit

 

History

History
349 lines (261 loc) · 14.2 KB

README.md

File metadata and controls

349 lines (261 loc) · 14.2 KB

In Pursuit of Precision: Quantitative Analysis of Synthetic Human Reconstructions

In this project we explore the performance of human reconstruction models. We focus on creating an accurate method and thus need human reconstruction datasets with reliable ground truth. Currently, real human reconstruction datasets do not provide such high accuray, we thus use self generated synthetic datasets. As human reconstruction model we use DeepMultiCap: Performance Capture of Multiple Characters Using Sparse Multiview Cameras (ICCV 2021). We use the provided code of the authors (https://github.com/DSaurus/DeepMultiCap) as base. As their code base is incomprehensive we additionally implement remaining code and also adapt their code to our synthetic dataset.

Requirements

  • torch
  • torchvision
  • trimesh
  • numpy
  • matplotlib
  • PIL
  • skimage
  • tqdm
  • cv2
  • json
  • taichi==0.6.39 or 0.7.15
  • taichi_three
  • taichi_glsl==0.0.10
  • configargparse
  • tensorboardX
  • open3d

Results

Qualitative Results

Result on our Squat dataset. Green depicts the ground truth, red the result of the coarse module and blue the result of the fine module.

Result on our Jumping Jack dataset. Again, green depicts the ground truth, red the resut of the coarse module nand bluethe result of the fine module.

Quantitative Results

Results of our method trained on Squat and evaluated on Squat.

Train Set Module # Cam. Chamfer P2S Norm.
Squat Coarse 5 0.022 0.033 0.033
Squat Fine 5 0.015 0.019 0.040

Results of our method trained on Squat and evaluated on Jumping Jack

Train Set Module # Cam. Chamfer P2S Norm.
Squat Fine 5 0.026 0.039 0.038

Results of our method trained on Squat and evaluated on Jumpings Jack considering different parts of the ground truth mesh (i.e., cloth and human).

Part Train Set Module # Cam. Chamfer P2S Norm.
Human Squat Fine 5 - 0.025 -
Cloth Squat Fine 5 - 0.016 -

Download the Data

Our pre-trained models and synthetic data can be found here under reproducing. Also download the pre-trained weights for the normal net. They are found under checkpoints. These are then also put in checkpoints in the workspace folder. The password is fcanys2333.

Unzip the synthetic.zip folder into data/ and the outputs folder directly workspace folder.

Documentation of Dataset Structure

All datasets (i.e., arm, jumping_jack, squat) follow the same data structure.

data/Synthetic
├── arm # arm dataset
├── jumping_jack # jumping jack dataset
├── old_val # a dataset similar to jumping jack, not used
├── old_val_easymocap # contains data used for easy mocap
├── squat
│   ├── Depth
│   ├── Normal
│   ├── Obj
│   └── person_0
│       ├── cloth # contains the cloth
│       ├── combined # contains the cloth and human data
│       ├── merged_2 # another variation we used for merging (not used)
│       ├── smplx # the ground truth smpl_x files
│       ├── smplx_no_cloth # the smplx_x files with only visible human shapes (only used for eval)
│       └── voxel_grid # the voxel grid produced by binvox for the smplx input (used, since binxo gets stuck)
│   ├── output_data.npz
│   ├── RGB
│   ├── scene_camera.json
│   ├── Segmentation
│   ├── smpl_pos # the smplx global normal maps
│   └── smpl_pred # the smpl human mesh predicted using easy mocap (see later sections of this readme)
└── squat_easymocap # contains data used for easy mocap

Evaluation on our synthetic data:

Evaluating the pre-trained models from the given outputs.zip folder.

The output will be found in the folder specified in the folder flag under folder/<your dataset>.

Evaluating the pre-trained coarse module on Squat dataset:

python apps/eval_3d.py --config configs/squat_coarse.yaml --val_size -1 --folder 07_19-01_22_15_SQUAT_COARSE

Evaluating the pre-trained fine module on Squat dataset:

python apps/eval_3d.py --config configs/squat_fine.yaml --val_size -1 --folder 07_19-15_26_36_SQUAT_FINE

Evaluating the pre-trained fine module on Squat dataset with only 2 cameras:

python apps/eval_3d.py --config configs/squat_fine.yaml --val_size -1 --folder 07_23-23_01_20_SQUAT_FINE_CAM_2 --cameras 6 28

Evaluating the pre-trained fine module on Squat dataset using the SMPL models predicted by EasyMocap:

python apps/eval_3d.py --config configs/squat_fine.yaml --val_size -1 --folder 07_20-22_49_16_SQUAT_FINE_PRED --smpl_path smpl_pred

Evaluating the pre-trained fine module on Jumping Jack dataset:

python apps/eval_3d.py --config configs/squat_fine.yaml --val_size -1 --folder 07_20-22_49_16_SQUAT_FINE_PRED --val_frames 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 --val_dataroot data/Synthetic/jumping_jack

Evaluating PIFuHD on camera 0:

python apps/evaluator.py 0

Evaluating PIfuHD on camera 6:

python apps/evaluator.py 6

The evaluation follows the following structure:

Evaluating the coarse module on Squat dataset:

python apps/eval_3d.py --config configs/squat_coarse.yaml --val_size -1 --folder <the_output_folder_of_that_experiment> 

For other datasets proceed analogously. Other configurations like validation frames, validation cameras, resolution etc. can be adjusted with flags or in the configuration.

The output will be found in the output folder.

Training on our synthetic data:

Training the coarse module on the Squat dataset:

python apps/train.py --config configs/squat_coarse.yaml

Training the fine module on the Squat dataset:

python apps/train.py --config configs/squat_fine.yaml --load_netG_checkpoint_path <insert model from coarse module>

For the arm and Jumping Jack dataset proceed analogously.

⚠️ Note that due to hardware constraints we set epochs to 20 and num_points_inout <= 5000 (refer to the specific configs). For better results you might want to increase these values.

Generating Input for Synthetic Data

Generating Masks

We use this repository for generating the masks.

  1. Follow the installment steps from the github repository, including detectron2 for the multiple human parsing framework.
  2. Make sure that the Synthetic data is under data/Synthetic/<first_trial>
  3. Make sure that all images to be parsed are in the same folder
cd external/Self-Correction-Human-Parsing
python process.py -src_img ../../data/Synthetic/first_trial -dst_img mhp_extension/data/synthetic_first_trial/global_pic
  1. Create coco style annotations for the images you just copied
cd mhp_extension
python ./coco_style_annotation_creator/test_human2coco_format.py --dataset "synthetic_first_trial" --json_save_dir "./data/synthetic_first_trial/annotations" --test_img_dir "./data/synthetic_first_trial/global_pic"
  1. Generate instance prediction for images
python finetune_net.py --num-gpus 1 --config-file configs/Misc/synthetic_first_trial.yaml --eval-only MODEL.WEIGHTS pretrain_model/detectron2_maskrcnn_cihp_finetune.pth TEST.AUG.ENABLED False DATALOADER.NUM_WORKERS 0
  1. Crop images by prediction bounding boxes
python make_crop_and_mask_w_mask_nms.py --img_dir "./data/synthetic_first_trial/global_pic" --save_dir "./data/synthetic_first_trial" --img_list "./data/synthetic_first_trial/annotations/synthetic_first_trial.json" --det_res "./data/synthetic_first_trial/detectron_2_prediction/inference/instances_predictions.pth"
  1. Generate txt files for images in global_pic and crop_pic
python generate_txt_file.py --folder_path "data/synthetic_first_trial/global_pic" --txt_file_name "global_pic.txt"
python generate_txt_file.py --folder_path "data/synthetic_first_trial/crop_pic" --txt_file_name "crop_pic.txt"
  1. Generate parsed images for cropped images, global images
cd ..
python ./mhp_extension/global_local_parsing/global_local_evaluate.py --data-dir "./mhp_extension/data/synthetic_first_trial" --split-name "crop_pic" --model-restore "./mhp_extension/pretrain_model/exp_schp_multi_cihp_local.pth" --log-dir "./mhp_extension/data/synthetic_first_trial" --save-results
python ./mhp_extension/global_local_parsing/global_local_evaluate.py --data-dir "./mhp_extension/data/synthetic_first_trial" --split-name "global_pic" --model-restore "./mhp_extension/pretrain_model/exp_schp_multi_cihp_global.pth" --log-dir "./mhp_extension/data/synthetic_first_trial" --save-results
  1. Install pip install joblib if necessary

  2. Fuse the inputs and get your results!

python mhp_extension/logits_fusion.py --test_json_path "./mhp_extension/data/synthetic_first_trial/crop.json" --global_output_dir "./mhp_extension/data/synthetic_first_trial/global_pic_parsing" --gt_output_dir "./mhp_extension/data/synthetic_first_trial/crop_pic_parsing"  --mask_output_dir "./mhp_extension/data/synthetic_first_trial/crop_mask" --save_dir "./mhp_extension/data/synthetic_first_trial/mhp_fusion_parsing"
  • Results are now in ./mhp_extension/data/synthetic_first_trial/mhp_fusion_parsing/global_tag
  1. Copy the results into the data folder:
python process.py --depth_folder ../../data/Synthetic/first_trial/Depth --depth_target ../../data/Synthetic/first_trial/depth_npz --img_folder ../../data/Synthetic/first_trial --img_target ../../data/Synthetic/first_trial/img --normal_folder ../../data/Synthetic/first_trial/Normal --normal_target ../../data/Synthetic/first_trial/normal_post_process --mask_folder ./mhp_extension/data/synthetic_first_trial/mhp_fusion_parsing/global_tag --mask_target ../../data/Synthetic/first_trial/masks

Creating SMPL Predictions

Download SMPL models:

pip install gdown wget
# You might need to rename the HrNet weight file
python scripts/download.py

Prepare your Conda environment (if necessary):

conda create -n easymocap python=3.9 -y
conda activate easymocap

Install remaining requirements:

cd external/EasyMocap-master
python -m pip install -r requirements.txt
python3 -m pip install pyrender
python setup.py develop

Convert Dataset into easymocap format:

python scripts/convert_params.py -i data/Synthetic/first_trial/camera_info.json -o data/Synthetic/first_trial_easymocap -d data/Synthetic/first_trial -f 30

Extract the images from videos:

data=/path/to/data
python scripts/preprocess/extract_video.py ${data} --no2d

Create 2D keypoints:

python apps/preprocess/extract_keypoints.py ${data} --mode yolo-hrnet

Create 3D keypoints:

python3 apps/demo/mvmp.py ${data} --out ${data}/output --annot annots --cfg config/exp/mvmp1f.yml --undis --vis_det --vis_repro

Track 3D keypoints:

python3 apps/demo/auto_track.py ${data}/output ${data}/output-track --track3d

Fit SMPL model:

python3 apps/demo/smpl_from_keypoints.py ${data} --skel ${data}/output-track/keypoints3d --out ${data}/output-track/smpl --verbose --opts smooth_poses 1e1

Running DeepMultiCap (Baseline)

⚠️ Make sure to switch to the branch baseline.

Also make sure to include the dataset under data, namely MultiHuman and multihuman_single_raw (see file structure).
Make sure to have pretrained checkpoints of DeepMultiCap downloaded in checkpoints/demo/ from here and the MultiHuman dataset

  1. Generate image, normal, masks and depth from object files:
cd taichi_render_gpu
python render_multi.py --data_root ../data/MultiHuman/single/obj --texture_root ../data/multihuman_single_raw/multihuman_single --save_path ../data/multihuman_single_inputs --num_angles 4
  • You should now have depth, img, mask, normal, and parameter in your data/multihuman_single_inputs folder.
  • These images should look like this:
  • These images do not contain any colors, because DeepMultiCap has a weird file structure and no documentation at all :(
  1. Generate smpl global maps
python render_smpl.py --dataroot ../data/multihuman_single_inputs --obj_path ../data/MultiHuman/single/smplx --faces_path ../lib/data/smplx_multi.obj --yaw_list 0 90 180 270
  • This should now generate a folder called smpl_pos
  1. Copy the smplx folder of data/MultiHuman/single/smplx into data/multihuman_single_inputs. "Normally", these should include the estimated smpl models from another method.

  2. Generate reconstructions and visualization

# go back to project root folder
python apps/eval_3d.py --config configs/multihuman_single.yaml --dataroot data/multihuman_single_inputs
  • Now the reconstructions should be in results/multihuman_single
  • The results look similar to:
  1. Evaluation of baseline (Not published by the authors)

Contributors

  • Tony Wang
  • Yushan Zheng
  • Michael Pabst