-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathResLSTM.py
162 lines (127 loc) · 5.94 KB
/
ResLSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from paddle.trainer_config_helpers import *
import paddle.trainer.config_parser as cp
import numpy as np
import logging
import math
is_predict = get_config_arg('is_predict', bool, False)
region_1_node_num = get_config_arg('nearby_num', int, 0)
region_2_node_num = get_config_arg('subnode', int, 0)
point = get_config_arg('point', int, 0)
with open('data/train.list', 'w') as f:
f.write('data/train/%s.txt' % point)
with open('data/test.list', 'w') as f:
f.write('data/test/%s.txt' % point)
process = 'process'
if is_predict:
process = 'process_predict'
with open('data/pred.list', 'w') as f:
f.write('data/predict_data/%s.txt' % point)
test = 'data/test.list'
train = 'data/train.list'
if is_predict:
train = None
test = 'data/pred.list'
NODE_NUM = region_1_node_num + region_2_node_num + 1
define_py_data_sources2(
train_list=train,
test_list=test,
module="data_provider",
obj=process,
args={
'num': NODE_NUM,
'point': point,
}
)
batch_size = 6
if is_predict:
batch_size = 1
settings(
batch_size=batch_size,
learning_rate=0.0001,
learning_method=RMSPropOptimizer(),#MomentumOptimizer(1e-4),#RMSPropOptimizer(epsilon=0.0001,rho=0.95),
regularization=L2Regularization(5e-4),
gradient_clipping_threshold=25
)
TERM_SIZE = 24
# cost
costs = []
# input
center_data = data_layer(name='data_0', size=TERM_SIZE)
first_region_nodes = []
second_region_nodes = []
counter = 1
for i in range(region_1_node_num):
key = "data_%s" % counter
first_region_nodes.append(data_layer(name=key, size=TERM_SIZE))
counter += 1
for j in range(region_2_node_num):
key = "data_%s" % counter
second_region_nodes.append(data_layer(name=key, size=TERM_SIZE))
counter += 1
bias_param = ParameterAttribute(l2_rate=0., initial_std=0.001, initial_mean=0.)
drop_param = ExtraLayerAttribute(drop_rate=0.3)
first_order_region_fc_layer = fc_layer(input=first_region_nodes,
size=region_1_node_num*4,
act=TanhActivation(),
bias_attr=bias_param,
layer_attr=drop_param
)
second_order_region_fc_layer = fc_layer(input=second_region_nodes,
size=region_2_node_num * 4,
act=TanhActivation(),
bias_attr=bias_param,
layer_attr=drop_param
)
forward_first_lstm_layer = lstmemory(input=first_order_region_fc_layer,act=ReluActivation(), bias_attr=bias_param)
# backward_first_lstm_layer = lstmemory(input=first_order_region_fc_layer,act=ReluActivation(), bias_attr=bias_param, reverse=True)
forward_second_lstm_layer = lstmemory(input=second_order_region_fc_layer,act=ReluActivation(), bias_attr=bias_param)
# backward_second_lstm_layer = lstmemory(input=second_order_region_fc_layer,act=ReluActivation(), bias_attr=bias_param, reverse=True)
first_order_region_fc_2_layer = fc_layer(input=forward_first_lstm_layer, size=region_1_node_num, act=TanhActivation(),bias_attr=bias_param)
second_order_region_fc_2_layer = fc_layer(input=forward_second_lstm_layer, size=region_2_node_num, act=TanhActivation(),bias_attr=bias_param)
near_regions_fc_layer = fc_layer(input=[first_order_region_fc_2_layer, second_order_region_fc_2_layer],
size=(region_2_node_num + region_1_node_num)*2,
act=ReluActivation(),
bias_attr=bias_param,
layer_attr=drop_param)
center_concat = concat_layer(input=[center_data,
near_regions_fc_layer]
)
nearby_res = fc_layer(input=near_regions_fc_layer, size=NODE_NUM, act=ReluActivation())
res = fc_layer(input=center_concat, size=NODE_NUM, act=ReluActivation(), bias_attr=bias_param)
res = fc_layer(input=[res, center_data], size=NODE_NUM, act=TanhActivation())
output_cost = []
labels = []
for i in range(TERM_SIZE):
labels.append(data_layer('label_%s' % i, size=4))
for i in range(TERM_SIZE):
final_bias = ParameterAttribute(momentum=0.0001,
l2_rate=0.,
initial_std=0.001,
initial_mean=0.)
add_res_layer = res
if i % 2 == 0:
add_res_layer = simple_lstm(name='add_res_lstm_%s_layer' % i,input=res, size=NODE_NUM, act=ReluActivation(), bias_param_attr=bias_param)
add_res_layer = addto_layer(input=[add_res_layer, res], act=TanhActivation(), bias_attr=bias_param)
else:
res_fc = fc_layer(name='add_res_%s_fc_layer' % i, input=res, size=NODE_NUM, act=ReluActivation(), bias_attr=bias_param)
add_res_layer = addto_layer(input=[res, res_fc], act=TanhActivation(), bias_attr=bias_param)
add_nearby_res = nearby_res
if i % 2 != 0:
nearby_res_fc = fc_layer(input=nearby_res, size=NODE_NUM, act=ReluActivation(), bias_attr=bias_param)
add_nearby_res = addto_layer(input=[nearby_res, nearby_res_fc], act=TanhActivation(), bias_attr=bias_param)
final_layer = fc_layer(input=[add_res_layer, add_nearby_res],
size=NODE_NUM * 4,
act=STanhActivation(),
bias_attr=final_bias,
layer_attr=drop_param
)
res = fc_layer(input=final_layer, size=NODE_NUM, act=TanhActivation(), bias_attr=final_bias)
nearby_res = add_nearby_res
time_value = fc_layer(input=last_seq(res), size=4, act=SoftmaxActivation())
if not is_predict:
ecost = classification_cost(input=time_value, name='cost%s' % i, label=labels[i])
output_cost.append(ecost)
else:
value = maxid_layer(time_value)
output_cost.append(value)
outputs(output_cost)