-
Notifications
You must be signed in to change notification settings - Fork 16
/
train.py
executable file
·266 lines (218 loc) · 9.95 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
"""Training script"""
import os
import time
import numpy as np
import torch
from transformers import BertTokenizer
from lib.datasets import image_caption
from lib.vse import VSEModel
from lib.evaluation import i2t, t2i, AverageMeter, LogCollector, encode_data, compute_sim
import logging
import tensorboard_logger as tb_logger
import arguments
def main():
# Hyper Parameters
parser = arguments.get_argument_parser()
opt = parser.parse_args()
if not os.path.exists(opt.model_name):
os.makedirs(opt.model_name)
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
tb_logger.configure(opt.logger_name, flush_secs=5)
logger = logging.getLogger(__name__)
logger.info(opt)
# Load Tokenizer and Vocabulary
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
vocab = tokenizer.vocab
opt.vocab_size = len(vocab)
train_loader, val_loader = image_caption.get_loaders(
opt.data_path, opt.data_name, tokenizer, opt.batch_size, opt.workers, opt)
model = VSEModel(opt)
lr_schedules = [opt.lr_update, ]
# optionally resume from a checkpoint
start_epoch = 0
if opt.resume:
if os.path.isfile(opt.resume):
logger.info("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
start_epoch = checkpoint['epoch']
best_rsum = checkpoint['best_rsum']
if not model.is_data_parallel:
model.make_data_parallel()
model.load_state_dict(checkpoint['model'])
# Eiters is used to show logs as the continuation of another training
model.Eiters = checkpoint['Eiters']
logger.info("=> loaded checkpoint '{}' (epoch {}, best_rsum {})"
.format(opt.resume, start_epoch, best_rsum))
# validate(opt, val_loader, model)
if opt.reset_start_epoch:
start_epoch = 0
else:
logger.info("=> no checkpoint found at '{}'".format(opt.resume))
if not model.is_data_parallel:
model.make_data_parallel()
# Train the Model
best_rsum = 0
for epoch in range(start_epoch, opt.num_epochs):
logger.info(opt.logger_name)
logger.info(opt.model_name)
adjust_learning_rate(opt, model.optimizer, epoch, lr_schedules)
if epoch >= opt.vse_mean_warmup_epochs:
opt.max_violation = True
model.set_max_violation(opt.max_violation)
# Set up the all warm-up options
if opt.precomp_enc_type == 'backbone':
if epoch < opt.embedding_warmup_epochs:
model.freeze_backbone()
logger.info('All backbone weights are frozen, only train the embedding layers')
else:
model.unfreeze_backbone(3)
if epoch < opt.embedding_warmup_epochs:
logger.info('Warm up the embedding layers')
elif epoch < opt.embedding_warmup_epochs + opt.backbone_warmup_epochs:
model.unfreeze_backbone(3) # only train the last block of resnet backbone
elif epoch < opt.embedding_warmup_epochs + opt.backbone_warmup_epochs * 2:
model.unfreeze_backbone(2)
elif epoch < opt.embedding_warmup_epochs + opt.backbone_warmup_epochs * 3:
model.unfreeze_backbone(1)
else:
model.unfreeze_backbone(0)
# train for one epoch
train(opt, train_loader, model, epoch, val_loader)
# evaluate on validation set
rsum = validate(opt, val_loader, model)
# remember best R@ sum and save checkpoint
is_best = rsum > best_rsum
best_rsum = max(rsum, best_rsum)
if not os.path.exists(opt.model_name):
os.mkdir(opt.model_name)
save_checkpoint({
'epoch': epoch + 1,
'model': model.state_dict(),
'best_rsum': best_rsum,
'opt': opt,
'Eiters': model.Eiters,
}, is_best, filename='checkpoint.pth'.format(epoch), prefix=opt.model_name + '/')
def train(opt, train_loader, model, epoch, val_loader):
# average meters to record the training statistics
logger = logging.getLogger(__name__)
batch_time = AverageMeter()
data_time = AverageMeter()
train_logger = LogCollector()
logger.info('image encoder trainable parameters: {}'.format(count_params(model.img_enc)))
logger.info('txt encoder trainable parameters: {}'.format(count_params(model.txt_enc)))
num_loader_iter = len(train_loader.dataset) // train_loader.batch_size + 1
end = time.time()
# opt.viz = True
for i, train_data in enumerate(train_loader):
# switch to train mode
model.train_start()
# measure data loading time
data_time.update(time.time() - end)
# make sure train logger is used
model.logger = train_logger
# Update the model
if opt.precomp_enc_type == 'basic':
images, img_lengths, captions, lengths, _ = train_data
model.train_emb(images, captions, lengths, image_lengths=img_lengths)
else:
images, captions, lengths, _ = train_data
if epoch == opt.embedding_warmup_epochs:
warmup_alpha = float(i) / num_loader_iter
model.train_emb(images, captions, lengths, warmup_alpha=warmup_alpha)
else:
model.train_emb(images, captions, lengths)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# logger.info log info
if model.Eiters % opt.log_step == 0:
if opt.precomp_enc_type == 'backbone' and epoch == opt.embedding_warmup_epochs:
logging.info('Current epoch-{}, the first epoch for training backbone, warmup alpha {}'.format(epoch,
warmup_alpha))
logging.info(
'Epoch: [{0}][{1}/{2}]\t'
'{e_log}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
.format(
epoch, i, len(train_loader.dataset) // train_loader.batch_size + 1, batch_time=batch_time,
data_time=data_time, e_log=str(model.logger)))
# Record logs in tensorboard
tb_logger.log_value('epoch', epoch, step=model.Eiters)
tb_logger.log_value('step', i, step=model.Eiters)
tb_logger.log_value('batch_time', batch_time.val, step=model.Eiters)
tb_logger.log_value('data_time', data_time.val, step=model.Eiters)
model.logger.tb_log(tb_logger, step=model.Eiters)
def validate(opt, val_loader, model):
logger = logging.getLogger(__name__)
model.val_start()
with torch.no_grad():
# compute the encoding for all the validation images and captions
img_embs, cap_embs = encode_data(
model, val_loader, opt.log_step, logging.info, backbone=opt.precomp_enc_type == 'backbone')
img_embs = np.array([img_embs[i] for i in range(0, len(img_embs), 5)])
start = time.time()
sims = compute_sim(img_embs, cap_embs)
end = time.time()
logger.info("calculate similarity time: {}".format(end - start))
# caption retrieval
npts = img_embs.shape[0]
# (r1, r5, r10, medr, meanr) = i2t(img_embs, cap_embs, cap_lens, sims)
(r1, r5, r10, medr, meanr) = i2t(npts, sims)
logging.info("Image to text: %.1f, %.1f, %.1f, %.1f, %.1f" %
(r1, r5, r10, medr, meanr))
# image retrieval
# (r1i, r5i, r10i, medri, meanr) = t2i(img_embs, cap_embs, cap_lens, sims)
(r1i, r5i, r10i, medri, meanr) = t2i(npts, sims)
logging.info("Text to image: %.1f, %.1f, %.1f, %.1f, %.1f" %
(r1i, r5i, r10i, medri, meanr))
# sum of recalls to be used for early stopping
currscore = r1 + r5 + r10 + r1i + r5i + r10i
logger.info('Current rsum is {}'.format(currscore))
# record metrics in tensorboard
tb_logger.log_value('r1', r1, step=model.Eiters)
tb_logger.log_value('r5', r5, step=model.Eiters)
tb_logger.log_value('r10', r10, step=model.Eiters)
tb_logger.log_value('medr', medr, step=model.Eiters)
tb_logger.log_value('meanr', meanr, step=model.Eiters)
tb_logger.log_value('r1i', r1i, step=model.Eiters)
tb_logger.log_value('r5i', r5i, step=model.Eiters)
tb_logger.log_value('r10i', r10i, step=model.Eiters)
tb_logger.log_value('medri', medri, step=model.Eiters)
tb_logger.log_value('meanr', meanr, step=model.Eiters)
tb_logger.log_value('rsum', currscore, step=model.Eiters)
return currscore
def save_checkpoint(state, is_best, filename='checkpoint.pth', prefix=''):
logger = logging.getLogger(__name__)
tries = 15
# deal with unstable I/O. Usually not necessary.
while tries:
try:
torch.save(state, prefix + filename)
if is_best:
torch.save(state, prefix + 'model_best.pth')
except IOError as e:
error = e
tries -= 1
else:
break
logger.info('model save {} failed, remaining {} trials'.format(filename, tries))
if not tries:
raise error
def adjust_learning_rate(opt, optimizer, epoch, lr_schedules):
logger = logging.getLogger(__name__)
"""Sets the learning rate to the initial LR
decayed by 10 every opt.lr_update epochs"""
if epoch in lr_schedules:
logger.info('Current epoch num is {}, decrease all lr by 10'.format(epoch, ))
for param_group in optimizer.param_groups:
old_lr = param_group['lr']
new_lr = old_lr * 0.1
param_group['lr'] = new_lr
logger.info('new lr {}'.format(new_lr))
def count_params(model):
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
return params
if __name__ == '__main__':
main()