Skip to content

Latest commit

 

History

History
309 lines (262 loc) · 34.1 KB

API_Documentation.md

File metadata and controls

309 lines (262 loc) · 34.1 KB

Documentation for GFW Layers & Datasets in API

Generic documentation about how to make get, post, patch and del requests to the api can be found in the RW-API DOCs. This includes basic information about Datasets, Layers, Vocabularies and Metadata.

Dataset Syntax

Syntax utilised by the front-end which dictate the appearance and behaviour of child layers in the application.

Vocabulary Tags

Datasets with application containing gfw may have the vocabulary: categoryTab. This vocabulary contaings the field tags which is an array of values used to categorise the dataset (and hence, it's attributed layers). The definition used here is that the first element of the tags array is the category tab it belongs to, and the second element is the subcategory. E.g. the VIIRS Alerts dataset has a vocabulary categoryTab with tag: ['forestChange', 'fireAlerts'] and hence will be found in the Forest Chanege tab under the Fire Alerts subcategory.

Note, the subcategories are defined in the GFW codebase - adding a new tag (e.g. [forestChange, myNewTag]) to a layer will not add a new item to the menu without an update to the corresponding GFW code also.

Metadata

Each dataset may contain a metadata key, which is an array of application specific metadata elements. To find metadata specific to the GFW platform filter metadata where metadata.application == 'gfw'.

Each metadata element must, by default, contain the keys: language, application, and info.

The info value is an object with an open schema, and is used to hold information about how the appearance in the slide out tabs and legend should behave, as well as the hold the dataset's metadata key.

  • info.name human readable name to be displayed in the slide out tab (string)
  • info.description subtitle for the layer name, usually containing technical details about the data (string)
  • info.colour the colour of the toggle (HEX format)
  • info.metadata the metadata key for the dataset (populates metadata modal)
  • info.isSelectorLayer indicates that layers should populate a selector drop-down in the legend (bool)
  • info.isMultiLayer indicates that layers should populate separate toggles in the legend (bool)
  • info.isMultiSelectorLayer indicates that layers should populate multiple selector drop-down in the legend (bool)
  • info.isLossLayer indicates that layer is tree cover loss (bool)

NOTE: only include a key if it is to be used and/or true i.e. a layer is a multiLayer there is no need to include all of the others as false.

Layer Syntax

Syntax that defines how the layer should behave. Specifically: the legend, layer palette, interactions, and searchability.

iso

At the top layer, the iso key conatins an array of iso3 codes of countries that relate to this layer. If empty (or contains a single element: 'global') then the layer is a global layer. This can be used to search and filter layers by location

applicationConfig

This is an object with open schema and is thus used to define how the layer should behave within the GFW application. It contains:

  • default - (bool)
  • global - is the layer a global layer? (bool)
  • active - should the layer be displayed? (bool)
  • moreInfo - an object which definds external links in the legend:
    • moreInfo.linkUrl - external URL
    • moreInfo.linkText - the text for that URL
    • moreInfo.text - any additional text or description

NOTE: the default and global keys are used with the iso key to define when to surface datasets/layers when country filters are selected.

Then there are a set of configs for each of the possible legend types:

  • selectorConfig
    • selectorConfig.value - an arbitrary slug matching the layer and the drop-down option (string) [optional]
    • selectorConfig.label - label shown on selector
    • selectorConfig.position - determines order of layers in the selector
    • selectorConfig.group - if multiple selectors, defines how to group them
    • selectorConfig.groupPosition - determines the order of the grouped drop-downs
    • selectorConfig.groupLabel - an arbitrary slug matching the group and the drop-down option (string)
  • multiConfig
    • multiConfig.color - colour of the toggle (HEX)
    • multiConfig.position - determines the order of the layers in the legend (int)

legendConfig

Determines how the legend should appear.

  • legendConfig.type - determines the type of legend. There are 3 types: basic, chloropleth, and gradient.

    For basic & chloropleth define an array of objects with a name and color field. The basic legend just gives coloured bullets, whereas chloropleth gives a flat segmented line with names beneath.

    For gradient, use value (can be strings) in place of name. These mark regular intervals along the flat bar corresponding to the colour at that point. If you only wish to have 'Low' and 'High' you can leave the value field as empty strings ('') far the intermediate items in the array.

  • legendConfig.items - an array of objects which define the items in the legend:

    • legendConfig.items[i].name - label/title of the layer
    • legendConfig.items[i].color - colour of the layer if basic or chloropleth type.

interactionConfig

Defines how tooltips behave on click (currently only available for CARTO layers). Takes the following format:

    "interactionConfig": {
    "output": [
        {
            "column": "name",
            "format": null,
            "prefix": "",
            "property": "Name",
            "suffix": "",
            "type": "string",
            "renderKey": "title"
        },
        ...
    ],
    "type": "intersection",
    "article": true
    }

Here output is a list of all data surfaced on click. The column value must correspond to a CARTO table column. There may also be a key article (bool), which is used for tool tips with images and urls (like Places to Watch). If Article: True then the output elements should contain a renderKey definition so that each output can be rendered correctly. Possible rendeKey values are:

  • image
  • imageCredit
  • title
  • summary
  • meta (link source or country etc) [optional]
  • readMoreLink

layerConfig

The most complicated object within the layer definition - and varies a lot depending on the type of layer/dataset.

In general the layerConfig defines:

  • where the source data comes from
  • how to style that data
  • how to animate the data (optional, vectors only)

To do this, the application employs the Layer Manager ver. 3.0 specification.

Though the layerConfig object varies from layer to layer they can be grouped into several broad categories depending on their data source and type:

type provider notes
Vector tile layer Vector tiles from some tile-cache endpoint. Dynamically styled.
Vector carto Vector tiles from Cartodb. Dynamically styled.
Vector mapbox Vector tiles served from Mapbox. Dynamically styled.
Raster tile layer Raster tiles served from some tile-cache endpoint. Pre-styled.
Raster decode RGB-encoded raster tiles served from some tile-cache. Required decoding before styling.
Raster gee Served from Google Earth Engine and cached in the wri api. Styled using SLD spec.

All layers of type Vector are styled (and in some cases animated) using the Mapbox Specification.

Common layerConfig Keys

Regardless of the type and source of the layer's data, there are some common key definitions:

key function
render Define how to style the layer
source Defines the layer's data source(s) and how to fetch it
params_config Defines variable that can be used or inserted into the source url
timeline_config Defines animation params e.g. step interval, speed etc
decode_config Defines params to be used in the decode of RGB values
decode_function Defines the function to be used to decode RGB values

Example Layers (c. May 2020)

The following is a list of currently in-use production layers.

name provider type layer_id
Alliance for Zero Extinction sites - 2019 carto vector https://api.resourcewatch.org/v1/layer/04118785-27f4-4fb0-8980-a786a44f5c6d
Biodiversity hot spots - 2016 carto vector https://api.resourcewatch.org/v1/layer/8e9a86e2-5e34-452e-bf55-d7c6648ea42e
BirdLife Endemic Bird Areas - 2014 carto vector https://api.resourcewatch.org/v1/layer/5dd45d79-7d09-421d-b7b9-baca3db3820d
Brazil biomes - 2004 carto vector https://api.resourcewatch.org/v1/layer/2f754096-a23c-4c7b-bee5-d5c414b4026b
Cambodia economic land concessions - 1995-2015 carto vector https://api.resourcewatch.org/v1/layer/cf355c2a-04d5-4410-a54e-cae296196a80
Cambodia protected areas - 1993-2014 carto vector https://api.resourcewatch.org/v1/layer/f72e7a11-e0e2-4cbc-a645-5593d3f050fa
Canada petroleum and natural gas - 2016 carto vector https://api.resourcewatch.org/v1/layer/caa4f921-dcb2-4a53-80b9-c85fda5e6dbf
Canada protected areas - 2015 carto vector https://api.resourcewatch.org/v1/layer/f611a6b9-cc1b-4111-8650-8ef9c395be00
Carbon dioxide emissions from tree cover loss in drained peat carto vector https://api.resourcewatch.org/v1/layer/62139f59-e2c1-4ce0-82d4-626ed68d3ecf
Congo Basin logging roads - 2014 carto vector https://api.resourcewatch.org/v1/layer/35b17f0d-3537-41dc-9bf3-27174fddf9e2
Disputed Political Boundaries carto vector https://api.resourcewatch.org/v1/layer/cc35432d-38d7-4a03-872e-3a71a2f555fc
Emerging hot spots carto vector https://api.resourcewatch.org/v1/layer/4a8b3393-1785-4f73-b949-9917e2e2b416
Fire Alerts (VIIRS) carto vector https://api.resourcewatch.org/v1/layer/93e33932-3959-4201-b8c8-6ec0b32596e0
Geographic coverage carto vector https://api.resourcewatch.org/v1/layer/2284c6fc-403f-42c1-9b45-cf9aa3f73ff2
Geographic coverage carto vector https://api.resourcewatch.org/v1/layer/a24953f8-7d4d-4f44-80cb-0ad16b759fdc
Geographic coverage carto vector https://api.resourcewatch.org/v1/layer/d415c475-2927-42ab-8cff-2049f0072403
Honduras forest type - 2013 carto vector https://api.resourcewatch.org/v1/layer/bfa9d4ba-2dd6-4899-9027-d8eac9a66846
Indonesia forest area carto vector https://api.resourcewatch.org/v1/layer/f84af037-4e4f-41cf-a053-94a606071232
Indonesia forest moratorium - 2018 carto vector https://api.resourcewatch.org/v1/layer/4b269f12-2f1a-4d38-b3a1-01cc1a0453ac
Indonesia land cover - 2017 carto vector https://api.resourcewatch.org/v1/layer/e07efebb-e1b7-4c0c-abb7-b8e1c514319b
Indonesia Leuser ecosystem - 2013 carto vector https://api.resourcewatch.org/v1/layer/2af0ff6c-26cc-4620-9889-27787a2671d0
Indonesia peat lands - 2012 carto vector https://api.resourcewatch.org/v1/layer/96d529a1-ade4-4cd1-bfe8-f94e6e3cdcae
Intact Forest Landscapes - 2000-2016 carto vector https://api.resourcewatch.org/v1/layer/af4e9e0b-cbf9-437b-80cb-9b0f795161ca
Land rights carto vector https://api.resourcewatch.org/v1/layer/a0c1b479-10ed-4538-9c8d-cdc9815b7054
Liberia mineral development agreements carto vector https://api.resourcewatch.org/v1/layer/329a5130-9e9b-4635-b2df-f91ecfd52a99
Liberia mineral development exploration license carto vector https://api.resourcewatch.org/v1/layer/5ef4fb04-de42-4bd4-a5f8-27c98ea9f11f
Liberia mineral exploration licenses carto vector https://api.resourcewatch.org/v1/layer/c6df9658-2717-4288-b1a0-c670baa7f31a
Logging concessions - 2018 carto vector https://api.resourcewatch.org/v1/layer/08fd9f5d-51c4-4c01-8c37-d63e86a0de30
Major dams - 2014 carto vector https://api.resourcewatch.org/v1/layer/d5f69c5a-14c5-46ee-81c8-bad794e52471
Malaysia peat lands - 2004 carto vector https://api.resourcewatch.org/v1/layer/dc129899-7410-4351-b595-2a288d429934
Mangrove forests - (1996–2010) carto vector https://api.resourcewatch.org/v1/layer/09fff1c0-c048-4e5d-ac14-909281d0c29b
Mangrove forests - (1996–2016) carto vector https://api.resourcewatch.org/v1/layer/dfa48856-84c3-4205-bac7-d672169ee0dc
Mangrove forests - (2010-2016) carto vector https://api.resourcewatch.org/v1/layer/30a73b6d-1cae-445f-83ea-70518d929200
Mangrove forests - 1996 carto vector https://api.resourcewatch.org/v1/layer/9b4ba439-d5c9-412f-9628-683152b03093
Mangrove forests - 2007 carto vector https://api.resourcewatch.org/v1/layer/dd904ffa-ff10-4af1-91d1-d3535093f326
Mangrove forests - 2008 carto vector https://api.resourcewatch.org/v1/layer/2789977c-cee8-49a9-b4e3-90846fab2390
Mangrove forests - 2009 carto vector https://api.resourcewatch.org/v1/layer/c8522570-f3bb-4a45-a65d-25f6817c8f2f
Mangrove forests - 2010 carto vector https://api.resourcewatch.org/v1/layer/bc734a74-9125-4baa-97b1-6be818592203
Mangrove forests - 2015 carto vector https://api.resourcewatch.org/v1/layer/bbe3c519-6ea2-4060-a120-a27b3ada1215
Mangrove forests - 2016 carto vector https://api.resourcewatch.org/v1/layer/26818337-d91d-4e80-9cd7-dc246c1461c7
Mexico forest zoning by category - 2011 carto vector https://api.resourcewatch.org/v1/layer/88bfc6b9-1962-4fea-b179-ecff5ac236f7
Mexico payments for ecosystem services - 2011-2015 carto vector https://api.resourcewatch.org/v1/layer/50f5209c-97a6-47f5-bb79-75dfc904eedf
Mexico protected areas - 2011-2016 carto vector https://api.resourcewatch.org/v1/layer/0d723e17-323f-45a0-bfd5-5dc211875874
Oil and gas concessions carto vector https://api.resourcewatch.org/v1/layer/52faa38e-3fcd-4109-85a8-7da8b2b433cf
Oil palm concessions carto vector https://api.resourcewatch.org/v1/layer/aef0a3e5-729e-4f1a-9b1c-25a73c7ea4c1
Palm oil mills - 2019 carto vector https://api.resourcewatch.org/v1/layer/4167a83a-d401-4c5f-bb27-55785ca51228
Peru forest concessions - 2015 carto vector https://api.resourcewatch.org/v1/layer/bcb74ae0-94d4-482c-8b34-c8dbe20d7cf2
Peru forest concessions by type - 2015 carto vector https://api.resourcewatch.org/v1/layer/04b547fc-1cd6-4690-9360-e403614b87d1
Peru permanent production forests - 2015 carto vector https://api.resourcewatch.org/v1/layer/2862a3c9-3809-401c-94fc-b2bd29f9255a
Peru protected areas - 2016 carto vector https://api.resourcewatch.org/v1/layer/9d0a910a-f119-411c-a5cc-3206657a2c92
Places to Watch carto vector https://api.resourcewatch.org/v1/layer/40816dac-d957-47bd-82e4-22f8840601eb
Political boundaries carto vector https://api.resourcewatch.org/v1/layer/b45350e3-5a76-44cd-b0a9-5038a0d8bfae
PRODES deforestation carto vector https://api.resourcewatch.org/v1/layer/b3529b7f-8fdd-4d10-a6eb-71c6effcbcd5
Protected areas - 2019 carto vector https://api.resourcewatch.org/v1/layer/f135d3cf-44d0-454e-8e82-87ce43b46a68
Protected areas (dashboard) carto vector https://api.resourcewatch.org/v1/layer/fc2d9dea-4238-4343-a2ed-2079c2c6a6c7
Resource rights carto vector https://api.resourcewatch.org/v1/layer/5f357ec8-3541-4c35-b386-6230bd384147
River basin boundaries carto vector https://api.resourcewatch.org/v1/layer/6a18fc40-18ff-4c4d-bad6-685a5e1ad0fa
RSPO oil palm concessions - 2017 carto vector https://api.resourcewatch.org/v1/layer/5ce140d9-260b-4e42-8b15-bd62193a5955
Sabah logging concessions - 2014 carto vector https://api.resourcewatch.org/v1/layer/a2cf4f96-c7a8-40d3-b26b-ec9fd8da3a51
Sabah timber plantations licenses - 2014 carto vector https://api.resourcewatch.org/v1/layer/4447562b-1a25-4e8e-b576-a6ab06ae6c92
Sarawak licenses for planted forests (LPFS) - 2011 carto vector https://api.resourcewatch.org/v1/layer/abcb728a-cee3-4f64-8533-2e0b1e4c3443
Sarawak logging concessions - 2010 carto vector https://api.resourcewatch.org/v1/layer/e39967ac-260c-49f0-a9c1-b9c4f90709fa
Sarawak oil palm concessions - 2010 carto vector https://api.resourcewatch.org/v1/layer/05b41fa1-6fe4-4a36-b661-a562000f9265
Sarawak protected areas - 2010-2014 carto vector https://api.resourcewatch.org/v1/layer/846c2b1b-da5a-4133-876e-004099672dd1
Terrestrial ecoregions carto vector https://api.resourcewatch.org/v1/layer/dff7fb25-5db1-4afe-b66a-65ed14fa557d
Tiger Conservation Landscapes - 2007-2014 carto vector https://api.resourcewatch.org/v1/layer/9df142fb-d56d-4001-90fb-a0008117793e
USA conservation easements - 2014 carto vector https://api.resourcewatch.org/v1/layer/1389d434-400b-4de3-a831-c96dd7c0c741
Wood fiber concessions by type - 2019 carto vector https://api.resourcewatch.org/v1/layer/82229960-13c2-4810-84e7-bdd4812d4578
Biodiversity intactness - 2016 GEE raster https://api.resourcewatch.org/v1/layer/bd2798d1-c771-4bff-84d9-c4d69d3b3121
Biodiversity significance - 2016 GEE raster https://api.resourcewatch.org/v1/layer/c1c306a3-31b6-409a-acf0-2a8f09e28363
Brazil land cover 1985 GEE raster https://api.resourcewatch.org/v1/layer/e45988eb-91e1-4af3-b46f-d05852443a23
Brazil land cover 1986 GEE raster https://api.resourcewatch.org/v1/layer/b59ff861-086e-4089-a476-a0c115a1b668
Brazil land cover 1987 GEE raster https://api.resourcewatch.org/v1/layer/280030fb-080b-410f-a06f-a8b539593592
Brazil land cover 1988 GEE raster https://api.resourcewatch.org/v1/layer/01522269-e2bd-44c1-9d89-c2132c9ed2fb
Brazil land cover 1989 GEE raster https://api.resourcewatch.org/v1/layer/58cebbad-733a-4757-8fca-8eca533fc7e2
Brazil land cover 1990 GEE raster https://api.resourcewatch.org/v1/layer/e5d5ebcf-2685-4bb8-b5cd-966391c07a21
Brazil land cover 1991 GEE raster https://api.resourcewatch.org/v1/layer/76c70979-ed5d-489f-86e3-8c4d1211eb5f
Brazil land cover 1992 GEE raster https://api.resourcewatch.org/v1/layer/9adf01cf-5391-4051-a90c-aff11042e6f4
Brazil land cover 1993 GEE raster https://api.resourcewatch.org/v1/layer/80db67dc-f464-4981-b364-5c12d807de4a
Brazil land cover 1994 GEE raster https://api.resourcewatch.org/v1/layer/d5d05c08-0c49-4a93-a706-65c8004c8ba2
Brazil land cover 1995 GEE raster https://api.resourcewatch.org/v1/layer/a3f41e53-2ff0-46bf-883c-65edc73cd1a1
Brazil land cover 1996 GEE raster https://api.resourcewatch.org/v1/layer/c3e0446c-d07d-4548-b8d2-0fba4204ed88
Brazil land cover 1997 GEE raster https://api.resourcewatch.org/v1/layer/6c8ed840-cbc4-44ca-bf38-3d871dfbecbd
Brazil land cover 1998 GEE raster https://api.resourcewatch.org/v1/layer/2929ad2c-cc0f-42e3-8829-f506e1e89f56
Brazil land cover 1999 GEE raster https://api.resourcewatch.org/v1/layer/211392b9-5370-46de-b697-90e114e9d3da
Brazil land cover 2000 GEE raster https://api.resourcewatch.org/v1/layer/bdcfa995-6d0b-4872-b4e0-993fa3d8807b
Brazil land cover 2001 GEE raster https://api.resourcewatch.org/v1/layer/7c247437-9e8b-4c64-ab96-2f9dd7d2e701
Brazil land cover 2002 GEE raster https://api.resourcewatch.org/v1/layer/9a569c02-c5e2-4e06-9f9f-08635e7e6a4c
Brazil land cover 2003 GEE raster https://api.resourcewatch.org/v1/layer/63a121ef-d850-4a39-b913-143882185b02
Brazil land cover 2004 GEE raster https://api.resourcewatch.org/v1/layer/6b4582b9-61cc-4349-832e-ffc4a0b5a472
Brazil land cover 2005 GEE raster https://api.resourcewatch.org/v1/layer/1f968961-e5ee-447b-96f7-9d4959ad2c0f
Brazil land cover 2006 GEE raster https://api.resourcewatch.org/v1/layer/e7d307a1-7b4a-4ba2-a1be-aacbf36383b7
Brazil land cover 2007 GEE raster https://api.resourcewatch.org/v1/layer/7043b623-5625-4685-b6f2-aaefb919eb0e
Brazil land cover 2008 GEE raster https://api.resourcewatch.org/v1/layer/cb2d4546-670d-4e6d-aaaa-539505b6f423
Brazil land cover 2009 GEE raster https://api.resourcewatch.org/v1/layer/6f068255-cdff-4dd1-aacd-2ea3c063eb71
Brazil land cover 2010 GEE raster https://api.resourcewatch.org/v1/layer/921cb771-c821-4cc4-bb5c-394b3960e5db
Brazil land cover 2011 GEE raster https://api.resourcewatch.org/v1/layer/ac0515e7-d2a6-4e7c-9bf5-0017cd19fb1e
Brazil land cover 2012 GEE raster https://api.resourcewatch.org/v1/layer/4f1314f7-a59b-412b-a57f-c2585025bd0a
Brazil land cover 2013 GEE raster https://api.resourcewatch.org/v1/layer/daac1887-0417-48f6-b899-7f6584227618
Brazil land cover 2014 GEE raster https://api.resourcewatch.org/v1/layer/9c0f0d0b-73a2-4acc-b1c2-1ad6d7681f34
Brazil land cover 2015 GEE raster https://api.resourcewatch.org/v1/layer/65c3871e-f4b7-4fd2-8b95-04548dc0fd66
Brazil land cover 2016 GEE raster https://api.resourcewatch.org/v1/layer/da57458a-107d-4ed5-88ed-07e03f328693
Brazil land cover 2017 GEE raster https://api.resourcewatch.org/v1/layer/ed13c7ac-5ea1-49e3-9d3a-38dbf445a178
Mangrove biomass density GEE raster https://api.resourcewatch.org/v1/layer/5196c6da-d5d2-4fbe-aef2-6aa882afbd7f
Population density - 2015 GEE raster https://api.resourcewatch.org/v1/layer/24aaef77-3cee-4bdd-b6c9-2f5ab147db7d
Potential carbon gains in cropland - 2018 GEE raster https://api.resourcewatch.org/v1/layer/d8d9e3ae-c6f3-41b5-b3a8-9bc0629a45f2
Potential carbon gains in cropland - 2028 GEE raster https://api.resourcewatch.org/v1/layer/1864947b-9fd4-4031-8f84-62a71c6e9536
Potential carbon gains in cropland - 2038 GEE raster https://api.resourcewatch.org/v1/layer/29d3e4e9-de51-42c0-afcb-5b4316cf4012
Potential carbon gains in cropland - 2048 GEE raster https://api.resourcewatch.org/v1/layer/804646ce-5a8f-4f09-935a-28be4a2d2ee8
Potential carbon gains in pastures - 2018 GEE raster https://api.resourcewatch.org/v1/layer/bbc3dd5a-cb1b-47c4-b369-953237018560
Potential carbon gains in pastures - 2028 GEE raster https://api.resourcewatch.org/v1/layer/f3ac8b80-32b9-438e-8a42-c38a143b4965
Potential carbon gains in pastures - 2038 GEE raster https://api.resourcewatch.org/v1/layer/c342ebdd-31b0-4875-ad74-6a01e23d4743
Potential carbon gains in pastures - 2048 GEE raster https://api.resourcewatch.org/v1/layer/1cc73ad5-f218-4797-9099-9031d7361c01
Potential carbon gains in young second-growth forests - 2018 GEE raster https://api.resourcewatch.org/v1/layer/ae18ed7c-f852-44f8-9e99-ecc1314bf298
Potential carbon gains in young second-growth forests - 2028 GEE raster https://api.resourcewatch.org/v1/layer/0e2892bc-4844-450c-a163-a808bec319d1
Potential carbon gains in young second-growth forests - 2038 GEE raster https://api.resourcewatch.org/v1/layer/8dea3c1f-cdef-4279-aa97-e9b7d8c7b514
Potential carbon gains in young second-growth forests - 2048 GEE raster https://api.resourcewatch.org/v1/layer/0cae9a9a-2a80-46eb-8c04-0ef7876d30b0
Primary forests - 2001 GEE raster https://api.resourcewatch.org/v1/layer/41086554-5ca5-456c-80dd-f6bee61bc45f
Projected carbon storage from forest regrowth GEE raster https://api.resourcewatch.org/v1/layer/b8a993f3-cccf-4f43-a39b-a4f7e59000f0
Soil carbon density GEE raster https://api.resourcewatch.org/v1/layer/d86c0afe-298a-4f7d-be69-e398b6a8ab20
Total potential carbon gains - 2028 GEE raster https://api.resourcewatch.org/v1/layer/217de2bc-9e88-45ab-9fce-902f61a9ae3e
Total potential carbon gains - 2038 GEE raster https://api.resourcewatch.org/v1/layer/a08a9344-adb0-42a2-abb2-e34d5f7ad087
Total potential carbon gains - 2048 GEE raster https://api.resourcewatch.org/v1/layer/adc98378-1a0b-4b57-8c18-27848ad3ca31
USA Land Cover - 2001 GEE raster https://api.resourcewatch.org/v1/layer/578b7ffe-ce22-4ede-b51d-dbe16dc22af8
USA Land Cover - 2006 GEE raster https://api.resourcewatch.org/v1/layer/7a9b0a06-7fda-4e12-824a-c9ae1ced3177
USA Land Cover - 2011 GEE raster https://api.resourcewatch.org/v1/layer/1ba24fc2-c826-4871-ae7e-c799669c37c7
USA Land Cover - 2016 GEE raster https://api.resourcewatch.org/v1/layer/d5b0a81b-70cd-4f33-860a-34a3c17867f3
Mongabay stories geojson vector https://api.resourcewatch.org/v1/layer/51c9b85c-1e7a-4b79-8041-d906251c0d68
Mining concessions mapbox vector https://api.resourcewatch.org/v1/layer/b8dbd752-08ea-4538-b15a-107a05f11463
Tree plantations mapbox vector https://api.resourcewatch.org/v1/layer/f2604a93-8059-4b24-9d02-c43ac224e286
Carbon dioxide emissions from tree cover loss tile layer raster https://api.resourcewatch.org/v1/layer/929662b6-3bf8-4413-b4b3-9b8c116f68bb
Deforestation alerts (GLAD) tile layer raster https://api.resourcewatch.org/v1/layer/8e4a527d-1bcd-4a12-82b0-5a108ffec452
Deforestation alerts (Terra-i) tile layer raster https://api.resourcewatch.org/v1/layer/50a76478-9f6e-4315-874a-611d10a50338
GLAD alerts (Confirmed Only) tile layer raster https://api.resourcewatch.org/v1/layer/40247642-7c89-49f3-9c1e-521913a06ae8
Guatemala forest change - 2001-2006 tile layer raster https://api.resourcewatch.org/v1/layer/435d5254-c44e-49e2-9e31-0ff12b5f0514
Guatemala forest change - 2001-2006 tile layer raster https://api.resourcewatch.org/v1/layer/20152c7f-cbd7-4ed8-b483-06f0495c68b3
Guatemala forest cover - 2012 tile layer raster https://api.resourcewatch.org/v1/layer/86fe7099-4c2c-4171-b11a-57c7ff7e4e57
Guatemala forest density - 2012 tile layer raster https://api.resourcewatch.org/v1/layer/a2795ace-ca08-4dd0-829a-c39580804ec8
Indonesia primary forest - 2000 tile layer raster https://api.resourcewatch.org/v1/layer/60eb4495-dc01-459e-ba18-4a0c820d9619
Land Cover - 2015 tile layer raster https://api.resourcewatch.org/v1/layer/e67f4276-c1d0-4970-b2d6-6dd17843f4c9
Mexico forest cover - 2013-2014 tile layer raster https://api.resourcewatch.org/v1/layer/c396b4aa-737b-4d3c-a3fe-fd292b4a455b
Recent Satellite tile layer raster https://api.resourcewatch.org/v1/layer/babd9968-4b55-4bc5-b771-d471ef8fbd8c
RTRS Guides for Responsible Soy Expansion - 2015 tile layer raster https://api.resourcewatch.org/v1/layer/bd0f1b68-4d70-41bd-bfb2-1831efc0c26e
Tree biomass density tile layer raster https://api.resourcewatch.org/v1/layer/1a1199e2-896b-4051-9419-eb4f67c554a7
Tree cover - 2000 tile layer raster https://api.resourcewatch.org/v1/layer/0cba3c4f-2d3b-4fb1-8c93-c951dc1da84b
Tree cover - 2010 tile layer raster https://api.resourcewatch.org/v1/layer/2351399c-ef2c-48da-9485-20698190acb0
Tree cover gain - 2001-2012 tile layer raster https://api.resourcewatch.org/v1/layer/0abe4aea-cc86-4c75-8c16-2f16bf78d8be
Tree cover loss tile layer raster https://api.resourcewatch.org/v1/layer/dce8004f-4d0f-4c2d-ae4b-dcf55e14035f
Tree cover loss by dominant driver tile layer raster https://api.resourcewatch.org/v1/layer/04774cb7-912c-4612-bbd8-ba982d532c88
USA forest ownership type - 2009 tile layer raster https://api.resourcewatch.org/v1/layer/2978f7b2-fcdb-4fe6-bca4-7ef56b469805
WRI Oil Palm Suitability Standard tile layer raster https://api.resourcewatch.org/v1/layer/0aaaaec8-3279-4a75-bedb-829c6cc88f36