-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcolumn_detect.py
78 lines (69 loc) · 3.51 KB
/
column_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import click, sys, numpy, scipy.misc, os.path, json
from PIL import Image
@click.command()
@click.option('-b', '--black-separator-thickness', default=5)
@click.option('-s', '--min-white-separator-thickness', default=10, type=click.IntRange(5, None))
@click.option('-p', '--max-black-portion', default=5.0)
@click.option('-o', '--output', required=True)
@click.option('-O', '--output-mode', default="single", type=click.Choice(["single","split","json"]))
@click.argument('IMAGE', type=click.Path(exists=True))
def cli(black_separator_thickness, min_white_separator_thickness, max_black_portion, output, output_mode, image):
"""
Detects likely column boundaries in B/W images.
"""
# load image
img = Image.open(open(image,"rb"))
array = numpy.asarray(img)
if len(array.shape) != 2:
click.echo(u"Not a bitonal image. Aborting.", err=True)
return 1
click.echo(u"Image dimensions x: %i; y: %i" % (array.shape[0], array.shape[1]), err=True)
# Localize white separators
white_separators = []
white_range_start = 0
for c in range(0,array.shape[1]):
black_pixels = 0
for r in range(0,array.shape[0]):
if array[r][c] == 0:
black_pixels += 1
if black_pixels * 100.0 / array.shape[0] < max_black_portion:
continue
elif (c - 1) - white_range_start > min_white_separator_thickness:
click.echo(u"Found white column from index %i to index %i" % (white_range_start,c - 1), err=True)
white_separators.append((white_range_start,c - 1))
white_range_start = c
if array.shape[1] - white_range_start > min_white_separator_thickness:
click.echo(u"Found white column from index %i to index %i" % (white_range_start,array.shape[1]), err=True)
white_separators.append((white_range_start,c - 1))
if output_mode == "single":
# White -> black separators
array.setflags(write=1)
black_column = numpy.asarray([0] * array.shape[0])
for white_separator in white_separators[1:-1]:
black_separator_start = int((white_separator[1] - white_separator[0]) / 2 - black_separator_thickness / 2)
for i in range(white_separator[0] + black_separator_start, white_separator[0] + black_separator_start + black_separator_thickness):
array[:,i] = black_column
# Save image with black separators
scipy.misc.imsave(output, array)
elif output_mode == "split":
for w in range(0,len(white_separators) - 1):
clip_l = white_separators[w][0]
clip_t = 0
clip_b = array.shape[0]
clip_r = white_separators[w+1][1]
click.echo("Cutting image at l: %i, t: %i, r: %i, b: %i" % (clip_l,clip_t,clip_r,clip_b), err=True)
column = img.crop((clip_l,clip_t,clip_r,clip_b))
column.save("%s_%02d%s" % (os.path.splitext(output)[0],w,os.path.splitext(output)[1]))
elif output_mode == "json":
out_json = {}
out_json[os.path.basename(image)] = []
for w in range(0,len(white_separators) - 1):
clip_l = white_separators[w][0]
clip_t = 0
clip_b = array.shape[0]
clip_r = white_separators[w+1][1]
click.echo("Found column region at l: %i, t: %i, r: %i, b: %i" % (clip_l,clip_t,clip_r,clip_b), err=True)
out_json[os.path.basename(image)].append({"l":clip_l,"t":clip_t,"r":clip_r,"b":clip_b})
json.dump(out_json, open(output, "w"))
if __name__ == '__main__':
cli()