-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
54 lines (47 loc) · 2.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from models.SenMatchSen import Config,Model
# from models.SeqMatchSeq import Config,Model
# from models.SeqMatchSeq_BiMPM import Config,Model
import tensorflow as tf
import glob
flags = tf.app.flags
flags.DEFINE_string('initial',"uniform","Type for initialization.")
flags.DEFINE_bool('focal',False,'Whether to use focal loss.')
flags.DEFINE_float('alpha', 0.75 ,'Alpha value for focal loss.')
flags.DEFINE_float('dropout', 0.05,'Value for dropout.')
flags.DEFINE_bool('fine_tune',False,'Choose to fine-tune or train.')
flags.DEFINE_float('init_learning_rate', 0.001,'Value for initial learning rate.')
flags.DEFINE_bool('with_validation',True,'Whether to go training with validation.')
flags.DEFINE_integer('max_to_save',5,'Maximum to save.')
flags.DEFINE_integer('num_epochs',500,'Total epochs.')
flags.DEFINE_integer('steps_every_epoch',100,'Steps in an epoch.')
flags.DEFINE_integer('batch_size',128,"Size of a batch.")
flags.DEFINE_integer('save_epochs',10,'Save epochs.')
flags.DEFINE_integer('early_stopping',10,"Metric for early stopping.")
flags.DEFINE_integer('epoch_adam_to_sgd',501,"Start epoch for changing adam to sgd.")
FLAGS = flags.FLAGS
def main(_):
Config.initial=FLAGS.initial
Config.focal=FLAGS.focal
Config.alpha=FLAGS.alpha
Config.dropout=FLAGS.dropout
Config.fine_tune=FLAGS.fine_tune
Config.init_learning_rate=FLAGS.init_learning_rate
model=Model(Config)
train_file="data/atec/10/train0.csv"
valid_file=train_file.replace("train","valid")
dict_path=train_file.replace(".csv","-"+"-".join([str(i) for i in Config.min_count_wc])+".json")
log_dir="logs/SenMatchSen/1st_atec_atec_dropout0.05"
save_dir=log_dir.replace("logs","checkpoints")
load_dir=None
model.fit(trainFile=train_file,validFile=valid_file,with_validation=FLAGS.with_validation,
load_path=load_dir,log_dir=log_dir,save_dir=save_dir,max_to_keep=FLAGS.max_to_save,
num_epochs=FLAGS.num_epochs,steps_every_epoch=FLAGS.steps_every_epoch,
batch_size=FLAGS.batch_size,save_epochs=FLAGS.save_epochs,
early_stopping=FLAGS.early_stopping,epoch_adam_to_sgd=FLAGS.epoch_adam_to_sgd)
load_dir=save_dir+"/trainval"
for load_path in glob.glob(load_dir+"/*.meta"):
load_path=load_path.replace(".meta","")
model.evaluate(validFile=train_file,dictPath=dict_path,load_path=load_path)
model.evaluate(validFile=valid_file,dictPath=dict_path,load_path=load_path)
if __name__=="__main__":
tf.app.run()