forked from xiaoyi018/simple_gemm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgemm-blocked.c
229 lines (204 loc) · 6.95 KB
/
gemm-blocked.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
const char* gemm_desc = "Blocked gemm with packing and intrinsics.";
#include "arm_neon.h"
#define A(i,j) a[(j)*n + (i)]
#define B(i,j) b[(j)*n + (i)]
#define C(i,j) c[(j)*n + (i)]
//size of macro kernel
#define KC 256
#define MC 1024
#define NC 1024
//size of micro kernel
#define MR 8
#define NR 8
//Local buffers for storing panels from A, B and C
static float _A[MC * KC] __attribute__ ((aligned (16)));;
static float _B[KC * NC] __attribute__ ((aligned (16)));;
static float _C[MR * NR] __attribute__ ((aligned (16)));;
//Packing complete panels from A (i.e. without padding)
static void pack_MRxk(int n, int k, const float *a, float *a_to){
int i, j;
for(j = 0; j < k; j++){
for (i = 0; i < MR; i++)
a_to[i] = A(i, 0);
a_to += MR;
a += n;
}
}
//Packing panels from A with padding if required
static void pack_A(int n, int mc, int kc, const float *a, float *a_to){
int mp = mc / MR;
int _mr = mc % MR;
int i, j;
for (i = 0; i < mp; i++){
pack_MRxk(n, kc, a, a_to);
a_to += kc * MR;
a += MR;
}
if (_mr > 0){
for (j = 0; j < kc; j++){
for (i = 0; i < _mr; i++)
a_to[i] = A(i, 0);
for (i = _mr; i < MR; i++)
a_to[i] = 0.0;
a_to += MR;
a += n;
}
}
}
//Packing complete panels from B (i.e. without padding)
static void pack_kxNR(int n, int k, const float *b, float *b_to){
int i, j;
for (i = 0; i < k; i++){
for (j = 0; j < NR; j++)
b_to[j] = B(0, j);
b_to += NR;
b++;
}
}
//Packing panels from B with padding if required
static void pack_B(int n, int kc, int nc, const float *b, float *b_to){
int np = nc / NR;
int _nr = nc % NR;
int i, j;
for (j = 0; j < np; j++){
pack_kxNR(n, kc, b, b_to);
b_to += kc * NR;
b += NR * n;
}
if (_nr > 0){
for (i = 0; i < kc; i++){
for (j = 0; j < _nr; j++)
b_to[j] = B(0, j);
for (j = _nr; j < NR; j++)
b_to[j] = 0.0;
b_to += NR;
b++;
}
}
}
void micro_kernel(int RowC, int ColC, int kc, const float *a, const float *b, float *c, int flag){
float AB[MR * NR] __attribute__ ((aligned (16)));;
float32x4_t c_sum_00 = {0};
float32x4_t c_sum_01 = {0};
float32x4_t c_sum_02 = {0};
float32x4_t c_sum_03 = {0};
float32x4_t c_sum_04 = {0};
float32x4_t c_sum_05 = {0};
float32x4_t c_sum_06 = {0};
float32x4_t c_sum_07 = {0};
float32x4_t c_sum_40 = {0};
float32x4_t c_sum_41 = {0};
float32x4_t c_sum_42 = {0};
float32x4_t c_sum_43 = {0};
float32x4_t c_sum_44 = {0};
float32x4_t c_sum_45 = {0};
float32x4_t c_sum_46 = {0};
float32x4_t c_sum_47 = {0};
float32x4_t b_reg_0, b_reg_4;
float32x4_t a_reg_0, a_reg_4;
int i, j, l;
for (l = 0; l < kc; l++){
a_reg_0 = vld1q_f32(a + 8 * l );
a_reg_4 = vld1q_f32(a + 8 * l + 4);
b_reg_0 = vld1q_f32(b + 8 * l );
b_reg_4 = vld1q_f32(b + 8 * l + 4);
c_sum_00 = vfmaq_laneq_f32(c_sum_00, a_reg_0, b_reg_0, 0);
c_sum_01 = vfmaq_laneq_f32(c_sum_01, a_reg_0, b_reg_0, 1);
c_sum_02 = vfmaq_laneq_f32(c_sum_02, a_reg_0, b_reg_0, 2);
c_sum_03 = vfmaq_laneq_f32(c_sum_03, a_reg_0, b_reg_0, 3);
c_sum_04 = vfmaq_laneq_f32(c_sum_04, a_reg_0, b_reg_4, 0);
c_sum_05 = vfmaq_laneq_f32(c_sum_05, a_reg_0, b_reg_4, 1);
c_sum_06 = vfmaq_laneq_f32(c_sum_06, a_reg_0, b_reg_4, 2);
c_sum_07 = vfmaq_laneq_f32(c_sum_07, a_reg_0, b_reg_4, 3);
c_sum_40 = vfmaq_laneq_f32(c_sum_40, a_reg_4, b_reg_0, 0);
c_sum_41 = vfmaq_laneq_f32(c_sum_41, a_reg_4, b_reg_0, 1);
c_sum_42 = vfmaq_laneq_f32(c_sum_42, a_reg_4, b_reg_0, 2);
c_sum_43 = vfmaq_laneq_f32(c_sum_43, a_reg_4, b_reg_0, 3);
c_sum_44 = vfmaq_laneq_f32(c_sum_44, a_reg_4, b_reg_4, 0);
c_sum_45 = vfmaq_laneq_f32(c_sum_45, a_reg_4, b_reg_4, 1);
c_sum_46 = vfmaq_laneq_f32(c_sum_46, a_reg_4, b_reg_4, 2);
c_sum_47 = vfmaq_laneq_f32(c_sum_47, a_reg_4, b_reg_4, 3);
}
vst1q_f32(AB, c_sum_00);
vst1q_f32(AB + 4, c_sum_40);
vst1q_f32(AB + 8, c_sum_01);
vst1q_f32(AB + 12, c_sum_41);
vst1q_f32(AB + 16, c_sum_02);
vst1q_f32(AB + 20, c_sum_42);
vst1q_f32(AB + 24, c_sum_03);
vst1q_f32(AB + 28, c_sum_43);
vst1q_f32(AB + 32, c_sum_04);
vst1q_f32(AB + 36, c_sum_44);
vst1q_f32(AB + 40, c_sum_05);
vst1q_f32(AB + 44, c_sum_45);
vst1q_f32(AB + 48, c_sum_06);
vst1q_f32(AB + 52, c_sum_46);
vst1q_f32(AB + 56, c_sum_07);
vst1q_f32(AB + 60, c_sum_47);
if (flag == 0){
for (j = 0; j < NR; j++){
for (i = 0; i < MR; i++)
c[i * RowC + j * ColC] = 0.0;
}
}
for (j = 0; j < NR; j++){
for (i = 0; i < MR; i++)
c[i * RowC + j * ColC] += AB[i + j * MR];
}
}
//This is an auxiliary function for moving elements from local _C to matrix C.
static void add_vector(int n, int mr, int nr, const float * c_from, float *c){
int i, j;
for (j = 0; j < nr; j++){
for (i = 0; i < mr; i++)
C(i, j) += c_from[i + j * MR];
}
}
//Macro Kernel for the multiplication of blocks of A and B.
//We assume that these blocks were previously packed to buffers _A and _B.
static void macro_kernel(int n, int mc, int nc, int kc, float *c){
int mp = (mc + MR - 1) / MR;
int np = (nc + NR - 1) / NR;
int _mr = mc % MR;
int _nr = nc % NR;
int mr, nr, i, j;
for (j = 0; j < np; j++){
nr = (j != np - 1 || _nr == 0) ? NR : _nr;
for (i = 0; i < mp; i++){
mr = (i != mp - 1 || _mr == 0) ? MR : _mr;
if (mr == MR && nr == NR)
//If there is no padding, we just store the results in C.
micro_kernel(1, n, kc, &_A[i * kc * MR], &_B[j * kc * NR], &C(i * MR, j * NR), 1);
else{
//Else, we have to store the results in local _C temporarily,
micro_kernel(1, MR, kc, &_A[i * kc * MR], &_B[j * kc * NR], _C, 0);
//then move them into C.
add_vector(n, mr, nr, _C, &C(i * MR, j * NR));
}
}
}
}
void square_gemm(int n, float* a, float* b, float* c){
int m, k;
m = k = n;
int mb = (m + MC - 1) / MC;
int nb = (n + NC - 1) / NC;
int kb = (k + KC - 1) / KC;
int _mc = m % MC;
int _nc = n % NC;
int _kc = k % KC;
int mc, nc, kc;
int i, j, l;
for (j = 0; j < nb; j++){
nc = (j != nb - 1 || _nc == 0) ? NC : _nc;
for (l = 0; l < kb; l++){
kc = (l != kb - 1 || _kc == 0) ? KC : _kc;
pack_B(n, kc, nc, &B(l * KC, j * NC), _B);
for (i = 0; i < mb; i++){
mc = (i != mb - 1 || _mc==0) ? MC : _mc;
pack_A(n, mc, kc, &A(i * MC, l * KC), _A);
macro_kernel(n, mc, nc, kc, &C(i * MC, j * NC));
}
}
}
}