-
Notifications
You must be signed in to change notification settings - Fork 0
/
spm_Ncdf.m
95 lines (88 loc) · 3.23 KB
/
spm_Ncdf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
function F = spm_Ncdf(x,u,v)
% Cumulative Distribution Function (CDF) for univariate Normal distributions
% FORMAT F = spm_Ncdf(x,u,v)
%
% x - ordinates
% u - mean [Defaults to 0]
% v - variance (v>0) [Defaults to 1]
% F - pdf of N(u,v) at x (Lower tail probability)
%__________________________________________________________________________
%
% spm_Ncdf implements the Cumulative Distribution Function (CDF) for
% the Normal (Gaussian) family of distributions.
%
% Definition:
%--------------------------------------------------------------------------
% The CDF F(x) of a Normal distribution with mean u and variance v is
% the probability that a random realisation X from this distribution
% will be less than x. F(x)=Pr(X<=x) for X~N(u,v). See Evans et al.,
% Ch29 for further definitions and variate relationships.
%
% If X~N(u,v), then Z=(Z-u)/sqrt(v) has a standard normal distribution,
% Z~N(0,1). The CDF of the standard normal distribution is known as \Phi(z).
%
% (KWorsley) For extreme variates with abs(z)>6 where z=(x-u)/sqrt(v), the
% approximation \Phi(z) \approx exp(-z^2/2)/(z*sqrt(2*pi)) may be useful.
%
% Algorithm:
%--------------------------------------------------------------------------
% The CDF for a standard N(0,1) Normal distribution, \Phi(z), is
% related to the error function by: (Abramowitz & Stegun, 26.2.29)
%
% \Phi(z) = 0.5 + erf(z/sqrt(2))/2
%
% MATLAB's implementation of the error function is used for computation.
%
% References:
%--------------------------------------------------------------------------
% Evans M, Hastings N, Peacock B (1993)
% "Statistical Distributions"
% 2nd Ed. Wiley, New York
%
% Abramowitz M, Stegun IA, (1964)
% "Handbook of Mathematical Functions"
% US Government Printing Office
%
% Press WH, Teukolsky SA, Vetterling AT, Flannery BP (1992)
% "Numerical Recipes in C"
% Cambridge
%
%__________________________________________________________________________
% Copyright (C) 1995-2019 Wellcome Trust Centre for Neuroimaging
% Andrew Holmes
% $Id: spm_Ncdf.m 7548 2019-03-20 10:08:49Z guillaume $
%-Format arguments, note & check sizes
%--------------------------------------------------------------------------
if nargin<3, v=1; end
if nargin<2, u=0; end
if nargin<1, F=[]; return, end
ad = [ndims(x);ndims(u);ndims(v)];
rd = max(ad);
as = [[size(x),ones(1,rd-ad(1))];...
[size(u),ones(1,rd-ad(2))];...
[size(v),ones(1,rd-ad(3))]];
rs = max(as);
xa = prod(as,2)>1;
if sum(xa)>1 && any(any(diff(as(xa,:)),1))
error('non-scalar args must match in size');
end
%-Computation
%--------------------------------------------------------------------------
%-Initialise result to zeros
F = zeros(rs);
%-Only defined for strictly positive variance v. Return NaN if undefined.
md = ( ones(size(x)) & ones(size(u)) & v>0 );
if any(~md(:))
F(~md) = NaN;
warning('SPM:negativeVariance','Returning NaN for out of range arguments.');
end
%-Non-zero where defined
Q = find( md );
if isempty(Q), return, end
if xa(1), Qx=Q; else Qx=1; end
if xa(2), Qu=Q; else Qu=1; end
if xa(3), Qv=Q; else Qv=1; end
%-Compute
F(Q) = 0.5 + 0.5*erf((x(Qx)-u(Qu))./sqrt(2*v(Qv)));
%-Compute using \Phi(z) = erfc(-z/sqrt(2))/2
%F(Q) = 0.5 * erfc(-(x(Qx)-u(Qu))./sqrt(2*v(Qv)));