forked from wenbowen123/iros20-6d-pose-tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
642 lines (561 loc) · 21.9 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
#
# Authors: Bowen Wen
# Contact: wenbowenxjtu@gmail.com
# Created in 2020
#
# Copyright (c) Rutgers University, 2020 All rights reserved.
#
# Wen, B., C. Mitash, B. Ren, and K. E. Bekris. "se (3)-TrackNet:
# Data-driven 6D Pose Tracking by Calibrating Image Residuals in
# Synthetic Domains." In IEEE/RSJ International Conference on Intelligent
# Robots and Systems (IROS). 2020.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the PRACSYS, Bowen Wen, Rutgers University,
# nor the names of its contributors may be used to
# endorse or promote products derived from this software without
# specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
import open3d as o3d
import sys,math,random
import os,subprocess
import re
import scipy.io
dir_path = os.path.dirname(os.path.realpath(__file__))
sys.path.append(dir_path)
sys.path.append(dir_path+'/scripts/')
from eval_ycb import VOCap
from multiprocessing import cpu_count
import argparse
import torch
from torch import optim
from Utils import *
import numpy as np
import yaml
from data_augmentation import *
from se3_tracknet import *
from datasets import *
from offscreen_renderer import *
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
import numpy as np
import cv2
from PIL import Image
import copy
import glob
import mpl_toolkits.mplot3d.axes3d as p3
import transformations as T
import Utils as U
from scipy import spatial
from multiprocessing import Pool
import multiprocessing
from functools import partial
from itertools import repeat
import multiprocessing as mp
from vispy_renderer import VispyRenderer
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
torch.backends.cudnn.benchmark = True
def project_points(points,K):
us = np.divide(points[:,0]*K[0,0],points[:,2]) + K[0,2]
vs = np.divide(points[:,1]*K[1,1],points[:,2]) + K[1,2]
us = np.round(us).astype(np.int32).reshape(-1,1)
vs = np.round(vs).astype(np.int32).reshape(-1,1)
return np.hstack((us,vs))
def use_posecnn_res(class_id,seq_frame_str):
with open('{}/image_sets/keyframe.txt'.format(ycb_dir),'r') as ff:
lines = ff.readlines()
seq_frames = []
for i in range(len(lines)):
seq_frames.append(lines[i].rstrip())
seq_id = int(seq_frame_str.split('/')[0])
start_frame = int(seq_frame_str.split('/')[1])
neighbor = 0
while 1:
tmp = '%04d/%06d'%(seq_id,start_frame+neighbor)
if tmp in seq_frames:
start_frame = start_frame+neighbor
index = seq_frames.index(tmp)
break
tmp= '%04d/%06d'%(seq_id,start_frame-neighbor)
if tmp in seq_frames:
start_frame = start_frame-neighbor
index = seq_frames.index(tmp)
break
neighbor += 1
print('Using posecnn at ',tmp)
index = seq_frames.index(tmp)
posecnn_res = scipy.io.loadmat('/YCB_Video_toolbox/results_PoseCNN_RSS2018/%06d.mat'.format(args.ycb_dir)%(index))
id = np.where(posecnn_res['rois'][:,1]==class_id)
tmp = posecnn_res['poses_icp'][id].reshape(-1)
quat = tmp[:4]
R = T.quaternion_matrix(quat)[:3,:3]
xyz = tmp[4:]
pose = np.eye(4)
pose[:3,:3] = R
pose[:3,3] = xyz
return pose
class Tracker:
def __init__(self, dataset_info, images_mean, images_std, ckpt_dir, trans_normalizer=0.03, rot_normalizer=5*np.pi/180):
self.dataset_info = dataset_info
self.image_size = (dataset_info['resolution'], dataset_info['resolution'])
self.object_cloud = o3d.io.read_point_cloud(dataset_info['models'][0]['model_path'])
self.object_cloud = self.object_cloud.voxel_down_sample(voxel_size=0.005)
print('self.object_cloud loaded and downsampled')
if 'object_width' not in dataset_info:
object_max_width = compute_obj_max_width(self.object_cloud)
bounding_box = dataset_info['boundingbox']
with_add = bounding_box / 100 * object_max_width
self.object_width = object_max_width + with_add
else:
self.object_width = dataset_info['object_width']
print('self.object_width=',self.object_width)
self.mean = images_mean
self.std = images_std
cam_cfg = dataset_info['camera']
self.K = np.array([cam_cfg['focalX'], 0, cam_cfg['centerX'], 0, cam_cfg['focalY'], cam_cfg['centerY'], 0,0,1]).reshape(3,3)
print('Loading ckpt from ',ckpt_dir)
checkpoint = torch.load(ckpt_dir)
print('pose track ckpt epoch={}'.format(checkpoint['epoch']))
self.model = Se3TrackNet(image_size=self.image_size[0])
self.model.load_state_dict(checkpoint['state_dict'])
self.model = self.model.cuda()
self.model.eval()
if 'renderer' in dataset_info and dataset_info['renderer']=='pyrenderer':
print('Using pyrenderer')
self.renderer = Renderer([dataset_info['models'][0]['obj_path']],self.K,cam_cfg['height'],cam_cfg['width'])
else:
print('Using vispy renderer')
self.renderer = VispyRenderer(dataset_info['models'][0]['model_path'], self.K, H=dataset_info['resolution'], W=dataset_info['resolution'])
self.prev_rgb = None
self.prev_depth = None
self.frame_cnt = 0
self.errs = []
posttransforms = Compose([OffsetDepth(),NormalizeChannels(images_mean, images_std),ToTensor()])
self.dataset = TrackDataset('','eval',images_mean, images_std,None,None,posttransforms,dataset_info, trans_normalizer=trans_normalizer, rot_normalizer=rot_normalizer)
def render_window(self, ob2cam):
'''
@ob2cam: 4x4 mat ob in opencv cam
'''
glcam_in_cvcam = np.array([[1,0,0,0],
[0,-1,0,0],
[0,0,-1,0],
[0,0,0,1]])
bbox = compute_bbox(ob2cam, self.K, self.object_width, scale=(1000, -1000, 1000))
ob2cam_gl = np.linalg.inv(glcam_in_cvcam).dot(ob2cam)
left = np.min(bbox[:, 1])
right = np.max(bbox[:, 1])
top = np.min(bbox[:, 0])
bottom = np.max(bbox[:, 0])
if isinstance(self.renderer,VispyRenderer):
self.renderer.update_cam_mat(self.K, left, right, bottom, top)
render_rgb, render_depth = self.renderer.render_image(ob2cam_gl)
else:
bbox = compute_bbox(ob2cam, self.K, self.object_width, scale=(1000, 1000, 1000))
rgb, depth = self.renderer.render([ob2cam])
depth = (depth*1000).astype(np.uint16)
render_rgb, render_depth = crop_bbox(rgb, depth, bbox, self.image_size)
return render_rgb, render_depth
def on_track(self, prev_pose, current_rgb, current_depth, gt_A_in_cam=None,gt_B_in_cam=None, debug=False, samples=1):
K = self.K
A_in_cam = prev_pose.copy()
glcam_in_cvcam = np.array([[1,0,0,0],
[0,-1,0,0],
[0,0,-1,0],
[0,0,0,1]])
bbs = []
sample_poses = []
rgbBs = []
depthBs = []
for i in range(samples):
if i==0:
sample_pose = prev_pose.copy()
bb = compute_bbox(sample_pose, self.K, self.object_width, scale=(1000, 1000, 1000))
bbs.append(bb)
sample_poses.append(sample_pose)
rgbB, depthB = crop_bbox(current_rgb, current_depth, bb, self.image_size)
rgbBs.append(rgbB)
depthBs.append(depthB)
sample_poses = np.array(sample_poses)
bbs = np.array(bbs)
rgbAs = []
depthAs = []
maskAs = []
for i in range(samples):
rgbA, depthA = self.render_window(sample_poses[i])
maskA = depthA>100
rgbAs.append(rgbA)
depthAs.append(depthA)
maskAs.append(maskA)
rgbAs,depthAs,maskAs = list(map(np.array, [rgbAs,depthAs,maskAs]))
rgbAs_backup = rgbAs.copy()
rgbBs_backup = rgbBs.copy()
if gt_B_in_cam is None:
print('**** gt_B_in_cam set to Identity')
gt_B_in_cam = np.eye(4)
dataAs = []
dataBs = []
for i in range(samples):
sample = self.dataset.processData(rgbAs[i],depthAs[i],sample_poses[i],rgbBs[i],depthBs[i],gt_B_in_cam)[0]
dataAs.append(sample[0].unsqueeze(0))
dataBs.append(sample[1].unsqueeze(0))
dataA = torch.cat(dataAs,dim=0).cuda().float()
dataB = torch.cat(dataBs,dim=0).cuda().float()
with torch.no_grad():
prediction = self.model(dataA,dataB)
pred_B_in_cams = []
for i in range(samples):
trans_pred = prediction['trans'][i].data.cpu().numpy()
rot_pred = prediction['rot'][i].data.cpu().numpy()
pred_B_in_cam = self.dataset.processPredict(sample_poses[i],(trans_pred,rot_pred))
pred_B_in_cams.append(pred_B_in_cam)
pred_B_in_cams = np.array(pred_B_in_cams)
final_estimate = pred_B_in_cams[0].copy()
self.prev_rgb = current_rgb
self.prev_depth = current_depth
pred_color, pred_depth = self.render_window(final_estimate)
canvas = makeCanvas([rgbBs_backup[0], pred_color], flipBR=True)
cv2.imshow('AB',canvas)
if self.frame_cnt==0:
cv2.waitKey(1)
else:
cv2.waitKey(1)
self.frame_cnt += 1
if samples==1:
return pred_B_in_cams[0]
return pred_B_in_cams[0]
def getResultsYcb():
debug = False
initialize_method = 'gt' #choose from ---- gt, posecnn, poserbpf
reinit_frames = None
if args.reinit_frames is not None:
reinit_frames = args.reinit_frames.split(',')
class_id = args.class_id
samples = 1
out_dir = outdir
if not os.path.exists(out_dir):
os.makedirs(out_dir)
preds = []
gts = []
seq_ids = []
frame_ids = []
test_data_dir = '{}/data_organized/'.format(args.ycb_dir)
gt_dirs = glob.glob(test_data_dir+'**/pose_gt')
gt_dirs.sort()
tracker = Tracker(dataset_info, images_mean, images_std,ckpt_dir)
keyframe_begin_id_map = {}
with open('{}/image_sets/keyframe.txt'.format(args.ycb_dir),'r') as ff:
lines = ff.readlines()
for i in range(len(lines)):
lines[i] = lines[i].rstrip()
tmp = lines[i].split('/')
seq = int(tmp[0])
frame_id = int(tmp[1])
if seq not in keyframe_begin_id_map.keys():
keyframe_begin_id_map[seq] = frame_id #In keyframe.txt, frame id starts from 1
keyframes_all = lines
seqs = U.findClassContainedVideosYcb(class_id,testset=True)
seqs.sort()
print('Found seqs: ',seqs)
tmp = []
for gt_dir in gt_dirs:
seq_id = int(re.findall(r'/\d{4}/',gt_dir)[0][1:-1])
if seq_id not in seqs:
continue
tmp.append(gt_dir)
gt_dirs = np.array(tmp)
tested_video = 0
for gt_dir in gt_dirs:
gt_dir = gt_dir+'/'
class_indices = list(map(int,os.listdir(gt_dir)))
if class_id not in class_indices:
continue
seq_id = int(re.findall(r'/\d{4}/',gt_dir)[0][1:-1])
if seq_id<48 or seq_id>59: #Skip non-test set
continue
rgb_files = glob.glob(gt_dir+'../color/*.png')
rgb_files.sort()
depth_files = glob.glob(gt_dir+'../depth_filled/*.png')
depth_files.sort()
gt_files = glob.glob(gt_dir+'{}/*.txt'.format(class_id))
gt_files.sort()
seg_files = glob.glob(gt_dir+'../seg/*.png')
seg_files.sort()
seq_frame = '%04d/%06d'%(seq_id,1)
if initialize_method=='posecnn': #Load PoseCNN estimate as initialization
posecnn_res_dir = '{}/YCB_Video_toolbox/results_PoseCNN_RSS2018/'.format(args.ycb_dir)
print('Loading PoseCNN estimate from ',posecnn_res_dir+'%06d.mat'%(keyframes_all.index(seq_frame)))
posecnn_res = scipy.io.loadmat(posecnn_res_dir+'%06d.mat'%(keyframes_all.index(seq_frame)))
id = np.where(posecnn_res['rois'][:,1]==class_id)
tmp = posecnn_res['poses_icp'][id].reshape(-1)
quat = tmp[:4]
R = T.quaternion_matrix(quat)[:3,:3]
xyz = tmp[4:]
prev_pose = np.eye(4)
prev_pose[:3,:3] = R
prev_pose[:3,3] = xyz
elif initialize_method=='poserbpf':
res_dir = '{}/YCB_Video_toolbox/PoseRBPF_Results/YCB_results_RGBD/'.format(args.ycb_dir)
folders = sorted(os.listdir(res_dir))
cur_res_dir = res_dir+folders[class_id-1]+'/'
cur_res_dir = cur_res_dir+'seq_{}/'.format(seqs.index(seq_id)+1)
print('poserbpf cur_res_dir\n',cur_res_dir)
file_dir = glob.glob(cur_res_dir+'Pose*.txt')[0]
with open(file_dir,'r') as ff:
line = ff.readlines()[0].rstrip()
pose = line.split()[2:]
tmp = np.eye(4)
tmp[:3,3] = pose[:3]
q_wxyz = pose[3:]
tmp[:3,:3] = T.quaternion_matrix(q_wxyz)[:3,:3]
prev_pose = tmp.copy()
elif initialize_method=='gt':
prev_pose = np.loadtxt(gt_files[0])
mat = {}
mat['poses'] = prev_pose
mat['frame_id'] = 1
mat['seq_id'] = seq_id
mat['gt_pose'] = np.loadtxt(gt_files[0])
print('init pose\n',prev_pose)
print('gt_pose\n',np.loadtxt(gt_files[0]))
tmp = cv2.imread(rgb_files[0])
H = tmp.shape[0]
W = tmp.shape[1]
writer = cv2.VideoWriter(out_dir+'seq{}.mp4'.format(seq_id),cv2.VideoWriter_fourcc(*'mp4v'), fps=30, frameSize=(W//2,H//2))
K = tracker.K.copy()
pred_poses = [prev_pose]
for i in range(1,len(rgb_files)):
if i%100==0:
print('>>>>>>>>>>>>>>> {}, {} / {}'.format(seq_id, i, len(rgb_files)))
frame_id = i+1
rgb = np.array(Image.open(rgb_files[i]))
rgb_viz = rgb.copy()
depth = cv2.imread(depth_files[i], cv2.IMREAD_UNCHANGED).astype(np.uint16)
gt_B_in_cam = np.loadtxt(gt_files[i])
# try:
cur_pose = tracker.on_track(prev_pose, rgb, depth, gt_A_in_cam=None,gt_B_in_cam=gt_B_in_cam, debug=debug,samples=samples)
# except Exception as e:
# print("ERROR ",e)
# cur_pose = prev_pose.copy()
prev_pose = cur_pose.copy()
pred_poses.append(cur_pose)
seq_frame = '%04d/%06d'%(seq_id,frame_id)
model = copy.deepcopy(tracker.object_cloud)
model.transform(cur_pose)
uvs = project_points(np.asarray(model.points).copy(),K)
cur_bgr = cv2.cvtColor(rgb_viz,cv2.COLOR_RGB2BGR)
cv2.putText(cur_bgr,"frame:{}".format(frame_id), (W//2,H-50), cv2.FONT_HERSHEY_SIMPLEX, fontScale=1,thickness=4,color=(255,0,0))
for ii in range(len(uvs)):
cv2.circle(cur_bgr,(uvs[ii,0],uvs[ii,1]),radius=1,color=(0,255,255),thickness=-1)
cur_bgr = cv2.resize(cur_bgr,(W//2,H//2))
writer.write(cur_bgr)
writer.release()
tested_video += 1
if len(pred_poses)!=len(rgb_files):
last_pose = pred_poses[-1]
for _ in range(len(rgb_files)-len(pred_poses)):
pred_poses.append(last_pose)
os.makedirs(out_dir+'seq{}'.format(seq_id),exist_ok=True)
for i in range(len(pred_poses)):
np.savetxt(out_dir+'seq{}/%07d.txt'.format(seq_id)%(i),pred_poses[i])
def predictSequenceYcb():
init = 'gt'
seq_id = 50
test_data_path = '{}/data_organized/%04d'.format(args.ycb_dir)%(seq_id)
class_id = 4
if args.class_id is not None:
class_id = args.class_id
start_frame = 0
reinit_frames = ''
if args.reinit_frames is not None:
reinit_frames = args.reinit_frames.split(',')
print('reinit_frames',reinit_frames)
samples = 1
rgb_files = glob.glob(os.path.join(test_data_path,'color/*'))
rgb_files.sort()
depth_files = glob.glob(os.path.join(test_data_path,'depth_filled/*'))
depth_files.sort()
gt_poses = []
gt_pose_files = glob.glob(os.path.join(test_data_path,'pose_gt/{}/*'.format(class_id)))
gt_pose_files.sort()
seg_files = glob.glob(os.path.join(test_data_path,'seg/*'))
seg_files.sort()
for f in gt_pose_files:
gt = np.loadtxt(f)
gt_poses.append(gt)
# break
tracker = Tracker(dataset_info, images_mean, images_std,ckpt_dir)
print('gt_poses[0]=\n',gt_poses[start_frame])
if init=='gt':
prev_pose = gt_poses[start_frame].copy()
elif init=='posecnn':
with open('{}/image_sets/keyframe.txt'.format(args.ycb_dir),'r') as ff:
lines = ff.readlines()
seq_frames = []
for i in range(len(lines)):
seq_frames.append(lines[i].rstrip())
neighbor = 0
while 1:
seq_frame_str= '%04d/%06d'%(seq_id,start_frame+neighbor)
if seq_frame_str in seq_frames:
start_frame = start_frame+neighbor
index = seq_frames.index(seq_frame_str)
break
seq_frame_str= '%04d/%06d'%(seq_id,start_frame-neighbor)
if seq_frame_str in seq_frames:
start_frame = start_frame-neighbor
index = seq_frames.index(seq_frame_str)
break
neighbor += 1
prev_pose = use_posecnn_res(class_id,seq_frame_str)
elif init=='poserbpf':
seqs = U.findClassContainedVideosYcb(class_id,testset=True)
seqs.sort()
res_dir = '{}/YCB_Video_toolbox/PoseRBPF_Results/YCB_results_RGBD/'.format(args.ycb_dir)
folders = sorted(os.listdir(res_dir))
cur_res_dir = res_dir+folders[class_id-1]+'/'
cur_res_dir = cur_res_dir+'seq_{}/'.format(seqs.index(seq_id)+1)
print('poserbpf cur_res_dir\n',cur_res_dir)
file_dir = glob.glob(cur_res_dir+'Pose*.txt')[0]
with open(file_dir,'r') as ff:
line = ff.readlines()[0].rstrip()
pose = line.split()[2:]
tmp = np.eye(4)
tmp[:3,3] = pose[:3]
q_wxyz = pose[3:]
tmp[:3,:3] = T.quaternion_matrix(q_wxyz)[:3,:3]
prev_pose = tmp.copy()
pred_poses = [prev_pose]
prev_second_pose = None
K = tracker.K.copy()
out_dir = outdir
os.makedirs(out_dir,exist_ok=True)
tmp = cv2.imread(depth_files[0],cv2.IMREAD_UNCHANGED)
H = tmp.shape[0]
W = tmp.shape[1]
for i in range(start_frame+1,len(rgb_files)):
if i%100==0:
print('>>>>>>>>>>>>>>>>',i)
rgb = np.array(Image.open(rgb_files[i]))
rgb_viz = rgb.copy()
depth = cv2.imread(depth_files[i], cv2.IMREAD_UNCHANGED).astype(np.uint16)
A_in_cam = prev_pose.copy()
seq_frame_str = '%04d/%06d'%(seq_id,i+1)
if seq_frame_str in reinit_frames:
A_in_cam = use_posecnn_res(class_id,'%04d/%06d'%(seq_id,i-1))
print('Reinitialized at ',i)
cur_pose = tracker.on_track(A_in_cam, rgb, depth, gt_A_in_cam=gt_poses[i-1],gt_B_in_cam=gt_poses[i], debug=False,samples=samples)
A_in_cam = cur_pose.copy()
prev_pose = cur_pose.copy()
pred_poses.append(cur_pose)
model = copy.deepcopy(tracker.object_cloud)
model.transform(cur_pose)
K = tracker.K.copy()
uvs = project_points(np.asarray(model.points),K)
cur_bgr = cv2.cvtColor(rgb_viz,cv2.COLOR_RGB2BGR)
for ii in range(len(uvs)):
cv2.circle(cur_bgr,(uvs[ii,0],uvs[ii,1]),radius=1,color=(0,255,255),thickness=-1)
cv2.putText(cur_bgr,"frame:{}".format(i), (W//2,H-50), cv2.FONT_HERSHEY_SIMPLEX, fontScale=1,thickness=4,color=(255,0,0))
cv2.imshow('1',cur_bgr)
if debug:
cv2.imwrite(out_dir+'%07d.png'%(i),cur_bgr)
cur_bgr = cv2.resize(cur_bgr,(W//2,H//2))
if i==1:
cv2.waitKey(1)
else:
cv2.waitKey(1)
pred_poses = np.array(pred_poses)
adi_errs = []
for i in range(len(pred_poses)):
np.savetxt(out_dir+'%05d.txt'%(i), pred_poses[i])
np.savetxt(out_dir+'%05dgt.txt'%(i),gt_poses[i])
err = U.adi(pred_poses[i],gt_poses[i],tracker.object_cloud)
adi_errs.append(err)
adi_auc = VOCap(np.array(adi_errs))*100
print('reinit_frames {}, adi_auc {}'.format(reinit_frames,adi_auc))
def predictSequenceMyData():
samples = 1
debug = False
test_data_path = args.YCBInEOAT_dir
print(test_data_path)
rgb_files = sorted(glob.glob('{}/rgb/*.png'.format(test_data_path)))
depth_files = sorted(glob.glob('{}/depth_filled/*.png'.format(test_data_path)))
tracker = Tracker(dataset_info, images_mean, images_std,ckpt_dir, trans_normalizer=0.03, rot_normalizer=30*np.pi/180)
gt_files = sorted(glob.glob('{}/annotated_poses/*.txt'.format(test_data_path)))
gt_poses = []
for i in range(len(gt_files)):
gt_pose = np.loadtxt(gt_files[i])
gt_poses.append(gt_pose)
pred_poses = [gt_poses[0]]
prev_second_pose = None
prev_pose = gt_poses[0].copy()
print('init pose\n',prev_pose)
K = tracker.K.copy()
out_dir = outdir
os.makedirs(out_dir,exist_ok=True)
tmp = cv2.imread(depth_files[0],cv2.IMREAD_UNCHANGED)
H = tmp.shape[0]
W = tmp.shape[1]
for i in range(len(rgb_files)):
rgb = np.array(Image.open(rgb_files[i]))[:,:,:3]
rgb_viz = rgb.copy()
depth = cv2.imread(depth_files[i], cv2.IMREAD_UNCHANGED).astype(np.uint16)
A_in_cam = prev_pose.copy()
cur_pose = tracker.on_track(A_in_cam, rgb, depth, gt_A_in_cam=np.eye(4),gt_B_in_cam=np.eye(4), debug=debug,samples=samples)
prev_pose = cur_pose.copy()
np.savetxt(out_dir+'%07d.txt'%(i),cur_pose)
model = copy.deepcopy(tracker.object_cloud)
model.transform(cur_pose)
uvs = project_points(np.asarray(model.points),K)
cur_bgr = cv2.cvtColor(rgb_viz,cv2.COLOR_RGB2BGR)
for ii in range(len(uvs)):
cv2.circle(cur_bgr,(uvs[ii,0],uvs[ii,1]),radius=1,color=(0,255,255),thickness=-1)
cv2.putText(cur_bgr,"frame:{}".format(i), (W//2,H-50), cv2.FONT_HERSHEY_SIMPLEX, fontScale=1,thickness=4,color=(255,0,0))
cv2.imshow('1',cur_bgr)
if i==0:
cv2.waitKey(0)
else:
cv2.waitKey(1)
cur_bgr = cv2.resize(cur_bgr,(W//2,H//2))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--ycb_dir', default='/media/bowen/e25c9489-2f57-42dd-b076-021c59369fec/DATASET/Tracking/YCB_Video_Dataset')
parser.add_argument('--YCBInEOAT_dir', default='/media/bowen/e25c9489-2f57-42dd-b076-021c59369fec/catkin_ws/src/iros20_dataset/video_rosbag/IROS_SELECTED/FINISHED_LABEL.iros_submission_version/bleach0')
parser.add_argument('--train_data_path', help="train_data_path path", default="None", type=str)
parser.add_argument('--class_id', default=-1, type=int, help='class id in YCB Video')
parser.add_argument('--ckpt_dir', type=str)
parser.add_argument('--mean_std_path', type=str)
parser.add_argument('--outdir', help="save res dir", type=str, default='/home/bowen/debug/')
parser.add_argument('--reinit_frames', type=str, default=None,help='reinit to compare with PoseRBPF')
args = parser.parse_args()
ckpt_dir = args.ckpt_dir
mean_std_path = args.mean_std_path
print('ckpt_dir:',ckpt_dir)
train_data_path = args.train_data_path
outdir = args.outdir
dataset_info_path = os.path.join(train_data_path,'../dataset_info.yml')
print('dataset_info_path',dataset_info_path)
with open(dataset_info_path,'r') as ff:
dataset_info = yaml.safe_load(ff)
images_mean = np.load(os.path.join(mean_std_path, "mean.npy"))
images_std = np.load(os.path.join(mean_std_path, "std.npy"))
# predictSequenceYcb()
# getResultsYcb()
predictSequenceMyData()