-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomputeNumericalGradient.m
35 lines (26 loc) · 1.14 KB
/
computeNumericalGradient.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
function numgrad = computeNumericalGradient(J, theta)
% numgrad = computeNumericalGradient(J, theta)
% theta: a vector of parameters
% J: a function that outputs a real-number. Calling y = J(theta) will return the
% function value at theta.
% Initialize numgrad with zeros
numgrad = zeros(size(theta));
%% ---------- YOUR CODE HERE --------------------------------------
% Instructions:
% Implement numerical gradient checking, and return the result in numgrad.
% (See Section 2.3 of the lecture notes.)
% You should write code so that numgrad(i) is (the numerical approximation to) the
% partial derivative of J with respect to the i-th input argument, evaluated at theta.
% I.e., numgrad(i) should be the (approximately) the partial derivative of J with
% respect to theta(i).
%
% Hint: You will probably want to compute the elements of numgrad one at a time.
[n,m] = size(theta);
e = 10e-4;
for i=1:n
theta_temp = zeros(size(theta));
theta_temp(i) = 1;
numgrad(i) = (J(theta + e*theta_temp) - J(theta - e*theta_temp))*(1/(2 * e));
end
%% ---------------------------------------------------------------
end