-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNo10FibonacciSequence.java
50 lines (44 loc) · 1.29 KB
/
No10FibonacciSequence.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
package com.wzx.sword;
/**
* @author wzx
* @see <a href="https://leetcode-cn.com/problems/fei-bo-na-qi-shu-lie-lcof/">https://leetcode-cn.com/problems/fei-bo-na-qi-shu-lie-lcof/</a>
*/
public class No10FibonacciSequence {
/**
* 青蛙跳与斐波那契数组思路一致
* 当 n>2 时,第一次跳的时候就有两种不同的选择:
* 一是第一次跳1级,此时跳法数目等于后面剩下的 n-1 级台阶的跳法数目,即为 f(n-1)
* 二是第一次跳2级,此时跳法数目等于后面剩下的 n-2 级台阶的跳法数目,即为 f(n-2)
* 因此,n级台阶的不同跳法的总数f(n) = f(n-1) + f(n-2)
*/
/**
* 滚动数组优化的动态规划
* <p>
* time: O(n)
* space: O(1)
*/
public int fib1(int n) {
if (n < 2) return n;
int dp_i_1 = 0;
int dp_i = 1;
for (int i = 2; i <= n; i++) {
int tmp = dp_i;
dp_i = (dp_i + dp_i_1) % 1000000007;
dp_i_1 = tmp;
}
return dp_i;
}
/**
* 递归
* 时间空间复杂度计算 https://blog.csdn.net/lxf_style/article/details/80458519
* <p>
* time: O(2^n)
* space: O(1)
*/
public int fib2(int n) {
if (0 == n) return 0;
if (1 == n || 2 == n) return 1;
// 题目要求取模
return (fib2(n - 1) + fib2(n - 2)) % 1000000007;
}
}