-
Notifications
You must be signed in to change notification settings - Fork 4
/
video.py
53 lines (38 loc) · 1.4 KB
/
video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# This script will detect faces in a specified video and ingest the data of number of faces into InfluxDB
# Created by Ignacio Van Droogenbroeck @hectorivand
import cv2
from datetime import datetime
from influxdb_client import Point, InfluxDBClient
from influxdb_client.client.write_api import SYNCHRONOUS
bucket = "crowd-counter"
client = InfluxDBClient.from_config_file('influxdb_config.ini')
write_api = client.write_api(write_options=SYNCHRONOUS)
query_api = client.query_api()
cap = cv2.VideoCapture('video.mp4') # Define your video here!
# Create the haar cascade
faceCascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
while(True):
# Capture frame-by-frame
ret, frame = cap.read()
# Our operations on the frame come here
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Detect faces in the image
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30)
#flags = cv2.CV_HAAR_SCALE_IMAGE
)
p = Point("public-count").tag("cameras", "entry").field("people", '{0}'.format(len(faces)))
write_api.write(bucket=bucket, record=p)
# Draw a rectangle around the faces
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
# Display the resulting frame
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()