forked from tomhartke/knowledge-graph-from-GPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknowledge_graph_querying.py
375 lines (294 loc) · 21 KB
/
knowledge_graph_querying.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import os
import openai
import re
import json
import numpy as np
import pandas as pd
from collections import Counter
from typing import Any, Optional, Tuple, Dict, List, NamedTuple, Set
import scipy
import time
from basic_utils import *
from knowledge_graph import *
QUESTION_PROMPT = "Question: "
ANSWER_PROMPT = "Answer: "
CONCEPT_LIST_PROMPT = "Extracted key words and concepts: "
RELATED_QUESTION_PROMPT = "Related question: "
def wrap_question_text(question_text):
return QUESTION_PROMPT + "{" + str(question_text) + '}'
def wrap_answer_text(answer_text):
return ANSWER_PROMPT + "{" + str(answer_text) + '}'
def wrap_concept_list_text(concept_list):
concept_list_string = '["' + '", "'.join(concept_list) + '"]'
concept_string = CONCEPT_LIST_PROMPT + concept_list_string
return concept_string
def wrap_concept_list_nice_text(concept_list):
concept_list_string = ', '.join(concept_list)
concept_string = CONCEPT_LIST_PROMPT + concept_list_string
return concept_string
def chain_card_example_objects(ordered_list_of_objects, cardID_list, knowledgeGraph):
possible_objects = ["question", "answer", "concept_list", "concept_list_nice", "abstraction_groups"]
assert all([(obj in possible_objects) for obj in ordered_list_of_objects]), ("Failed to chain "
"card examples: some object is not one of the allowed objects")
def get_object_from_kGraph(obj, cardID, knowledgeGraph):
if obj == "question":
return wrap_question_text(knowledgeGraph.cards[cardID].question)
elif obj == "answer":
return wrap_answer_text(knowledgeGraph.cards[cardID].answer)
elif obj == "concept_list":
return wrap_concept_list_text(knowledgeGraph.cards[cardID].concepts.get_concepts_list())
elif obj == "concept_list_nice":
return wrap_concept_list_nice_text(knowledgeGraph.cards[cardID].concepts.get_concepts_list())
elif obj == "abstraction_groups":
return CONCEPT_LIST_PROMPT + knowledgeGraph.cards[cardID].concepts.get_abstractions_dict_as_JSON_str()
chain_of_examples = ""
for cardID in cardID_list:
for obj in ordered_list_of_objects:
chain_of_examples += get_object_from_kGraph(obj, cardID, knowledgeGraph) + '\n'
chain_of_examples += '\n'
return chain_of_examples
###################### Question processing ######################
def extract_concepts_in_knowledgeGraph_from_subject_list(subject_list, knowledgeGraph):
question_concepts_list_in_knowledgeGraph = [concept for concept in subject_list
if concept in knowledgeGraph.nodes.keys()]
return list(set(question_concepts_list_in_knowledgeGraph))
def get_question_subject_list_from_card_sample(flashcardQuestion, sample_cardIDs, knowledgeGraph,
verbose=False,
extra_verbose=False):
flashcardPrompt = (chain_card_example_objects(["question", "concept_list"], sample_cardIDs, knowledgeGraph) +
wrap_question_text(flashcardQuestion) +'\n' + CONCEPT_LIST_PROMPT)
response_text, used_tokens = gen_response_text_with_backoff(flashcardPrompt, max_tokens = 200)
print("Used tokens:", used_tokens)
subject_list = json.loads(response_text)
subject_list_in_knowledgeGraph = extract_concepts_in_knowledgeGraph_from_subject_list(subject_list, knowledgeGraph)
if extra_verbose:
print(flashcardPrompt, response_text)
print('In graph:', subject_list_in_knowledgeGraph)
elif verbose:
print(flashcardQuestion, '\nExtracted concept list:', response_text)
print('In graph:', subject_list_in_knowledgeGraph)
return subject_list_in_knowledgeGraph
def sample_random_cardIDs(knowledgeGraph, num_cards_to_show=20):
return np.random.choice(range(len(knowledgeGraph.cards.keys())),num_cards_to_show)
def get_related_cardIDs_from_subject_list(subject_list_in_knowledgeGraph, knowledgeGraph,
num_cards_to_show=20):
# Returns the num_cards_to_show most relevant ones, but in reverse order of relevance (most relevant last)
if subject_list_in_knowledgeGraph is None or len(subject_list_in_knowledgeGraph) == 0:
random_cardIDs = sample_random_cardIDs(knowledgeGraph, num_cards_to_show=num_cards_to_show)
return random_cardIDs
# Get embedding vector based on concepts
question_emb_vec = emb_vec_weighted_union_of_nodes(subject_list_in_knowledgeGraph, knowledgeGraph)
question_emb_vec_trimmed = trim_embedding_vector(question_emb_vec)
# Get overlap with all cards directly
card_overlaps = {k: emb_vec_inner_product(question_emb_vec_trimmed, card.embedding_vector_trimmed) for k, card in knowledgeGraph.cards.items()}
card_sorted_keys, card_sorted_overlap_values = get_dict_items_sorted_by_decreasing_value(card_overlaps)
# Get most closely related card IDs and prompt
related_cardIDs = list(reversed(card_sorted_keys[0:num_cards_to_show])) # Reversed so most relevant is last
return related_cardIDs
def get_refined_subject_list_from_question(flashcardQuestion, knowledgeGraph,
num_cards_to_show=20,
verbose=False,
extra_verbose=False):
# Get initial embedding based on random sample of cards
random_cardIDs = sample_random_cardIDs(knowledgeGraph, num_cards_to_show=num_cards_to_show)
# Don't show much info from initial query unless asked
subject_list_in_knowledgeGraph = get_question_subject_list_from_card_sample(flashcardQuestion, random_cardIDs, knowledgeGraph,
verbose=extra_verbose,
extra_verbose=extra_verbose)
# Refine embeddings
related_cardIDs = get_related_cardIDs_from_subject_list(subject_list_in_knowledgeGraph, knowledgeGraph,
num_cards_to_show=num_cards_to_show)
subject_list_in_knowledgeGraph = get_question_subject_list_from_card_sample(flashcardQuestion, related_cardIDs, knowledgeGraph,
verbose=verbose,
extra_verbose=extra_verbose)
return subject_list_in_knowledgeGraph
###################### Generating and refining insightful questions ######################
def sort_cardIDs_by_rel_abs(emb_vec_target, input_cardIDs, knowledgeGraph, increasing_abstraction=True):
# Now sort the related cardIDs by relative abstraction
card_rel_abs = {k: get_emb_vec_relative_abstraction_1to2(emb_vec_target,
knowledgeGraph.cards[k].embedding_vector_trimmed,
knowledgeGraph)
for k in input_cardIDs}
card_sorted_keys_by_rel_abs, card_sorted_rel_abs_vals = get_dict_items_sorted_by_decreasing_value(card_rel_abs)
if not increasing_abstraction:
card_sorted_keys_by_rel_abs = list(reversed(card_sorted_keys_by_rel_abs))
card_sorted_rel_abs_vals = list(reversed(card_sorted_rel_abs_vals))
return card_sorted_keys_by_rel_abs, card_sorted_rel_abs_vals
def get_related_cardIDs_to_cards_with_changing_abstraction(input_cardIDs, knowledgeGraph, num_related_to_show=5,
increasing_abstraction=True):
related_cardIDs = []
for _cardID in input_cardIDs:
emb_vec_cardID = knowledgeGraph.cards[_cardID].embedding_vector_trimmed
card_overlaps = {k: emb_vec_inner_product(emb_vec_cardID, card.embedding_vector_trimmed)
for k, card in knowledgeGraph.cards.items()}
# if get_emb_vec_relative_abstraction_1to2(emb_vec_cardID, card.embedding_vector_trimmed,
# knowledgeGraph) < 0 }
card_sorted_keys, card_sorted_overlap_values = get_dict_items_sorted_by_decreasing_value(card_overlaps)
similar_cardIDs = list(card_sorted_keys[:num_related_to_show])
# Now sort the related cardIDs by relative abstraction
card_sorted_keys_by_rel_abs, _ = sort_cardIDs_by_rel_abs(emb_vec_cardID, similar_cardIDs, knowledgeGraph,
increasing_abstraction=increasing_abstraction)
related_cardIDs.append(list(card_sorted_keys_by_rel_abs))
return related_cardIDs
def wrap_related_card_examples(related_cardIDs, knowledgeGraph, increasing_abstraction=True):
increasing_decreasing_text = 'increasing' if increasing_abstraction else 'decreasing'
detail_change_text = '' if increasing_abstraction else ' and more detail'
example_question_and_related_questions = ""
example_question_and_related_questions += ("Group of related questions:"
+ detail_change_text + ":\n")
for _cardID in related_cardIDs:
example_question_and_related_questions += "Q: " + '{' + (knowledgeGraph.cards[_cardID].question) + '}\n'
return example_question_and_related_questions
def get_related_question_set_examples(knowledgeGraph, input_cardIDs=None,
num_seed_cards_to_show=3, num_related_cards_to_show=3,
increasing_abstraction=True):
if input_cardIDs == None:
use_cardIDs = sample_random_cardIDs(knowledgeGraph, num_cards_to_show=num_seed_cards_to_show)
else:
use_cardIDs = input_cardIDs
example_question_and_related_question = ""
for related_cardIDs in get_related_cardIDs_to_cards_with_changing_abstraction(use_cardIDs, knowledgeGraph,
num_related_to_show=num_related_cards_to_show,
increasing_abstraction=increasing_abstraction):
new_text = wrap_related_card_examples(related_cardIDs, knowledgeGraph,
increasing_abstraction=increasing_abstraction)
example_question_and_related_question += new_text +'\n'
return example_question_and_related_question
def get_suggested_further_questions_from_question_and_subject_list(flashcardQuestion, question_subject_list, knowledgeGraph,
num_seed_cards_to_show=3,
num_related_cards_to_show=5,
num_questions_to_generate=1,
temperature=1.0,
increasing_abstraction=True,
verbose=False,
extra_verbose=False):
increasing_decreasing_text = 'increasing' if increasing_abstraction else 'decreasing'
detail_change_text = '' if increasing_abstraction else ' and more detail'
if num_questions_to_generate > num_related_cards_to_show:
num_questions_to_generate = num_related_cards_to_show
# Get embedding vector based on concepts
question_emb_vec = emb_vec_weighted_union_of_nodes(question_subject_list, knowledgeGraph)
question_emb_vec_trimmed = trim_embedding_vector(question_emb_vec)
# Get related card IDs to display along with target question
related_cardIDs = get_related_cardIDs_from_subject_list(question_subject_list, knowledgeGraph,
num_cards_to_show=num_related_cards_to_show-num_questions_to_generate-1)
[related_cardIDs_sorted_by_rel_abs,
related_cardIDs_sorted_rel_abs] = sort_cardIDs_by_rel_abs(question_emb_vec_trimmed, related_cardIDs, knowledgeGraph,
increasing_abstraction=increasing_abstraction)
related_cardIDs_to_display = related_cardIDs_sorted_by_rel_abs.copy()
flashcardPrompt = ("Professor Smith has provided the following groups of questions to the class to review. "
"Within each group of questions, successive questions cover topics of " +
increasing_decreasing_text + " abstraction" + detail_change_text + ". "
"All questions are meant to be sufficiently detailed to be understandable without further context:\n\n" +
get_related_question_set_examples(knowledgeGraph,
input_cardIDs=None,
num_seed_cards_to_show=num_seed_cards_to_show,
num_related_cards_to_show=num_related_cards_to_show,
increasing_abstraction=increasing_abstraction) +
wrap_related_card_examples(related_cardIDs_to_display, knowledgeGraph,
increasing_abstraction=increasing_abstraction) +
"Q: " + '{' + flashcardQuestion + '}\n' + "Q: {")
response_text, used_tokens = gen_response_text_with_backoff(flashcardPrompt, max_tokens = 400, temperature=temperature)
print("Used tokens:", used_tokens)
generated_questions = response_text.strip()
generated_questions_list = generated_questions.split("Q: ")
generated_questions_list = [generated_question.strip("}{ \n") for generated_question in generated_questions_list]
if extra_verbose:
print(flashcardPrompt, response_text)
elif verbose:
print(flashcardQuestion)
print("\n".join(generated_questions_list))
# print(flashcardPrompt + response_text)
# print('Suggested question: ', generated_question)
return generated_questions_list
###################### Detailed answering ######################
def get_answer_from_question_with_subject_list(flashcardQuestion, question_subject_list, knowledgeGraph,
num_cards_to_show=10,
outside_knowledge_allowed=False,
verbose=False,
extra_verbose=False):
related_cardIDs = get_related_cardIDs_from_subject_list(question_subject_list, knowledgeGraph,
num_cards_to_show=num_cards_to_show)
if not outside_knowledge_allowed:
outside_knowledge_prompt = ("In this answer, we are allowed to ONLY use information contained in the last {} questions and answers. ".format(num_cards_to_show) +
"We cannot rely on any knowledge from outside the last {} questions and answers, ".format(num_cards_to_show) +
"and as a result we may not be able to answer the question. ")
else:
outside_knowledge_prompt = ("In this answer, we are allowed to use both information in the last {} questions and answers, as well as prior knowledge. ".format(num_cards_to_show) +
"However, when new evidence conflicts with prior knowledge, we should trust the new evidence. ".format(num_cards_to_show) +
"We may not be able to answer the question. ")
expansion_prompt = ("If we are not satisfied with our ability to answer the question fully and completely, then we must say so. "
'To indicate this to Professor Smith, we must add an additional statement "Suggested further questions: [your text here]" '
'to suggest what else we would need to know to answer the question fully. These suggested further questions should '
'be sufficiently detailed to be understood and answered without additional context or explanation. '
)
flashcardPrompt = ("Professor Smith has provided the following {} questions and answers to the class to review:\n".format(num_cards_to_show) +
chain_card_example_objects(["question", "answer"], related_cardIDs, knowledgeGraph) +
"Professor Smith has asked us to try to answer one final question. " +
expansion_prompt +
"In general, the response must be concise, simple, and direct. " +
outside_knowledge_prompt + '\n\n'+
QUESTION_PROMPT +
wrap_question_text(flashcardQuestion) +'\n' + ANSWER_PROMPT)
response_text, used_tokens = gen_response_text_with_backoff(flashcardPrompt, max_tokens = 400)
print("Used tokens:", used_tokens)
flashcardAnswer = response_text.strip()
if extra_verbose:
print(flashcardPrompt, response_text)
elif verbose:
print('Question:', flashcardQuestion, '\nAnswer:', flashcardAnswer)
return flashcardAnswer
###################### Enhancing the question only ######################
def enhanced_question_prompt(flashcardQuestion):
return ("\nA student is currently studying the following question:\n" + (wrap_question_text(flashcardQuestion) + '\n') +'\n' +
"We have been asked to rephrase this question to better test the students knowledge in as much detail as possible. "
"The rephrased question must test the exact same information as the original question. "
"It must be concise, simple, and direct. "
"Rephrased question: ")
def get_enhanced_question_from_question_and_subject_list(flashcardQuestion, question_subject_list, knowledgeGraph,
num_cards_to_show=10,
verbose=False,
extra_verbose=False):
related_cardIDs = get_related_cardIDs_from_subject_list(question_subject_list, knowledgeGraph,
num_cards_to_show=num_cards_to_show)
flashcardPrompt = ("Professor Smith has provided the following questions to the class to review:\n" +
chain_card_example_objects(["question"], related_cardIDs, knowledgeGraph) +
enhanced_question_prompt(flashcardQuestion)
)
response_text, used_tokens = gen_response_text_with_backoff(flashcardPrompt, max_tokens = 400)
print("Used tokens:", used_tokens)
generated_question = response_text.strip()
if extra_verbose:
print(flashcardPrompt, response_text)
elif verbose:
print('Rephrased question: ', generated_question)
return generated_question
###################### Enhancing the whole flashcard ######################
def enhanced_flashcard_prompt(flashcardQuestion, flashcardAnswer):
return ("\nA student is currently studying the following question and answer pair:\n" + (wrap_question_text(flashcardQuestion) + '\n') +
# (wrap_concept_list_text(flashcardConceptList) + '\n') +
(wrap_answer_text(flashcardAnswer) + '\n') +
'\n' +
"We have been asked to rephrase this question and answer pair to improve its quality. " # to better test the students knowledge in as much detail as possible. "
"The rephrased question and answer must test the exact same information as the original question. "
"It must be concise, simple, and direct. "
"When applicable, it should summarize ideas into numbered lists, or structured notes, to show an organized hierarchy of ideas.\n\n"
"Rephrased version: ")
def get_enhanced_flashcard_from_question_and_answer_and_subject_list(flashcardQuestion, flashcardAnswer, question_subject_list, knowledgeGraph,
num_cards_to_show=10,
verbose=False,
extra_verbose=False):
related_cardIDs = get_related_cardIDs_from_subject_list(question_subject_list, knowledgeGraph,
num_cards_to_show=num_cards_to_show)
flashcardPrompt = ("Professor Smith has provided the following question and answer pairs to the class to review:\n" +
chain_card_example_objects(["question", "answer"], related_cardIDs, knowledgeGraph) +
enhanced_flashcard_prompt(flashcardQuestion, flashcardAnswer)
)
response_text, used_tokens = gen_response_text_with_backoff(flashcardPrompt, max_tokens = 400)
print("Used tokens:", used_tokens)
# generated_question = response_text.strip()
if extra_verbose:
print(flashcardPrompt, response_text)
elif verbose:
print('Response:\n', response_text)
return response_text