-
Notifications
You must be signed in to change notification settings - Fork 1
/
experiment_real_cascade.py
95 lines (76 loc) · 2.98 KB
/
experiment_real_cascade.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# coding: utf-8
import os
import numpy as np
import pandas as pd
from graph_tool import load_graph
from glob import glob
from tqdm import tqdm
from joblib import Parallel, delayed
from itertools import product
from eval_helpers import eval_map
from experiment import one_run
from helpers import makedir_if_not_there, is_processed
from graph_tool import openmp_set_num_threads
openmp_set_num_threads(1)
parallel = True
max_n_jobs = -1
n_sample = 1000
# , 'pagerank', 'min-steiner-tree'
methods = ['our']
root_sampler = 'pagerank'
infection_proba = 0.1
# a batch of settings to iterate through
settings = [
{'graphs': ['digg'],
'obs_fractions': np.linspace(0.3, 0.5, 3)}
]
print(settings)
for setting in settings:
graphs, obs_fractions = setting['graphs'], \
setting['obs_fractions'],
for graph, obs_fraction, method \
in product(
graphs, obs_fractions, methods
):
g = load_graph('data/{}/graph_weighted_{}.gt'.format(graph, infection_proba))
# assume the infection probability is fixed
edge_weights = g.new_edge_property('float')
edge_weights.a = infection_proba
dataset_id = "{}-o{:.1f}-omuniform".format(graph, obs_fraction)
print('method', method)
print('dataset_id', dataset_id)
input_dir = 'cascade/{}/'.format(dataset_id)
if method != 'our':
output_dir = 'output/{}/{}/'.format(method, dataset_id)
eval_result_path = 'eval/{}/{}.pkl'.format(method, dataset_id)
else:
output_dir = 'output/{}-{}/{}/'.format(method, root_sampler, dataset_id)
eval_result_path = 'eval/{}-{}/{}.pkl'.format(method, root_sampler, dataset_id)
eval_dir = os.path.dirname(eval_result_path)
print('eval_dir', eval_dir)
makedir_if_not_there(eval_dir)
makedir_if_not_there(output_dir)
if parallel:
print('parallel: ON')
if method == 'min-steiner-tree':
n_jobs = 4 # memory reason
else:
n_jobs = max_n_jobs
print('n_jobs', n_jobs)
rows = Parallel(n_jobs=n_jobs)(delayed(one_run)(
g, edge_weights, input_path, output_dir, method,
root_sampler_name=root_sampler,
n_sample=n_sample)
for input_path in tqdm(glob(input_dir + '*.pkl'))
if not is_processed(input_path, output_dir))
else:
print('parallel: OFF')
for input_path in tqdm(glob(input_dir + '*.pkl')):
one_run(g, edge_weights, input_path, output_dir, method,
root_sampler_name=root_sampler,
n_sample=n_sample)
# assert len(rows) > 0, 'nothing calculated'
scores = eval_map(input_dir, output_dir)
summ = pd.Series(scores).describe()
print(summ)
summ.to_pickle(eval_result_path)