forked from johannesgerer/jburkardt-f
-
Notifications
You must be signed in to change notification settings - Fork 1
/
bayes_beta.html
152 lines (127 loc) · 3.82 KB
/
bayes_beta.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
<html>
<head>
<title>
BAYES_BETA: Bayesian Parameter Estimation
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
BAYES_BETA <br> Bayesian Parameter Estimation
</h1>
<hr>
<p>
<b>BAYES_BETA</b>
if a FORTRAN90 program which
is a simple Bayesian Statistics demonstration.
</p>
<p>
Suppose we're watching a "system" and trying to analyze its behavior.
Each time we observe the system, it flips a coin a certain number of
times, and reports the number of heads and tails. We want to estimate
THETA1 and THETA2, the probabilities of heads and of tails.
</p>
<p>
We treat the values of THETA1 and THETA2 as random variables
themselves, controlled by a Beta probability density function, which has
parameters ALPHA1 and ALPHA2. We make an arbitrary or informed guess
for initial values of ALPHA1 and ALPHA2. We observe the system,
and adjust ALPHA1 and ALPHA2 using Bayes's Law. We continue until
we are satisfied that our estimates seem to have converged.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/bayes_dice/bayes_dice.html">
BAYES_DICE</a>,
a FORTRAN90 program which
uses Bayesian analysis to adjust a model of loaded dice
based on a sequence of experimental observations.
</p>
<p>
<a href = "../../f_src/bayes_weight/bayes_weight.html">
BAYES_WEIGHT</a>,
a FORTRAN90 program which
uses Bayesian analysis to adjust a model of loaded dice
based on a sequence of experimental observations.
</p>
<p>
<a href = "../../f_src/bdmlib/bdmlib.html">
BDMLIB</a>,
a FORTRAN90 library which
estimates the weights in a Dirichlet mixtured based on sample data;
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "bayes_beta.f90">bayes_beta.f90</a>, the source code;
</li>
<li>
<a href = "bayes_beta.sh">bayes_beta.sh</a>,
commands to compile and load the source code;
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "bayes_beta_output.txt">bayes_beta_output.txt</a>, a sample run;
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>BAYES_BETA</b> does a simple demonstration of Bayesian statistics.
</li>
<li>
<b>TEST01</b> does a simple demonstration of Bayesian statistics.
</li>
<li>
<b>BETA</b> returns the value of the Beta function.
</li>
<li>
<b>BETA_MAX</b> returns the most likely values of T1 and T2 for a Beta PDF.
</li>
<li>
<b>BETA_PDF</b> returns the value of the Beta probability density function.
</li>
<li>
<b>BETA_PLOT</b> "plots" the Beta distribution for given parameters.
</li>
<li>
<b>LOG_GAMMA</b> calculates the natural logarithm of GAMMA ( X ) for positive X.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a timestamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 30 August 2005.
</i>
<!-- John Burkardt -->
</body>
</html>