forked from johannesgerer/jburkardt-f
-
Notifications
You must be signed in to change notification settings - Fork 1
/
lyness_rule.html
330 lines (291 loc) · 8.32 KB
/
lyness_rule.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
<html>
<head>
<title>
LYNESS_RULE - Quadrature Rules for the Triangle
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
LYNESS_RULE <br> Quadrature Rules for the Triangle
</h1>
<hr>
<p>
<b>LYNESS_RULE</b>
is a FORTRAN90 library which
produces the Lyness-Jespersen family of quadrature rules for the triangle.
</p>
<p>
The rules have the following orders (number of points) and
precisions (maximum degree of polynomials whose integrals they
can compute exactly):
<table border="1" align="center">
<tr>
<th>Rule</th><th>Order</th><th>Precision</th>
</tr>
<tr>
<td>0</td><td> 1</td><td> 1</td>
</tr>
<tr>
<td>1</td><td> 3</td><td> 2</td>
</tr>
<tr>
<td>2</td><td> 4</td><td> 2</td>
</tr>
<tr>
<td>3</td><td> 4</td><td> 3</td>
</tr>
<tr>
<td>4</td><td> 7</td><td> 3</td>
</tr>
<tr>
<td>5</td><td> 6</td><td> 4</td>
</tr>
<tr>
<td>6</td><td> 10</td><td> 4</td>
</tr>
<tr>
<td>7</td><td> 9</td><td> 4</td>
</tr>
<tr>
<td>8</td><td> 7</td><td> 5</td>
</tr>
<tr>
<td>9</td><td> 10</td><td> 5</td>
</tr>
<tr>
<td>10</td><td> 12</td><td> 6</td>
</tr>
<tr>
<td>11</td><td> 16</td><td> 6</td>
</tr>
<tr>
<td>12</td><td> 13</td><td> 6</td>
</tr>
<tr>
<td>13</td><td> 13</td><td> 7</td>
</tr>
<tr>
<td>14</td><td> 16</td><td> 7</td>
</tr>
<tr>
<td>15</td><td> 16</td><td> 8</td>
</tr>
<tr>
<td>16</td><td> 21</td><td> 8</td>
</tr>
<tr>
<td>17</td><td> 16</td><td> 8</td>
</tr>
<tr>
<td>18</td><td> 19</td><td> 9</td>
</tr>
<tr>
<td>19</td><td> 22</td><td> 9</td>
</tr>
<tr>
<td>20</td><td> 27</td><td>11</td>
</tr>
<tr>
<td>21</td><td> 28</td><td>11</td>
</tr>
</table>
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this
web page are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>LYNESS_RULE</b> is available in
<a href = "../../cpp_src/lyness_rule/lyness_rule.html">a C++ version</a> and
<a href = "../../f_src/lyness_rule/lyness_rule.html">a FORTRAN90 version</a> and
<a href = "../../m_src/lyness_rule/lyness_rule.html">a MATLAB version.</a>
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/dunavant/dunavant.html">
DUNAVANT</a>,
a FORTRAN90 library which
defines Dunavant rules for quadrature on a triangle.
</p>
<p>
<a href = "../../f_src/fekete/fekete.html">
FEKETE</a>,
a FORTRAN90 library which
defines Fekete rules for interpolation or quadrature on a triangle.
</p>
<p>
<a href = "../../f_src/felippa/felippa.html">
FELIPPA</a>,
a FORTRAN90 library which
defines quadrature rules for lines, triangles, quadrilaterals,
pyramids, wedges, tetrahedrons and hexahedrons.
</p>
<p>
<a href = "../../f_src/gm_rule/gm_rule.html">
GM_RULE</a>,
a FORTRAN90 library which
defines a Grundmann-Moeller
rule for quadrature over a triangle, tetrahedron, or general
M-dimensional simplex.
</p>
<p>
<a href = "../../f_src/ncc_triangle/ncc_triangle.html">
NCC_TRIANGLE</a>,
a FORTRAN90 library which
defines Newton-Cotes closed quadrature rules on a triangle.
</p>
<p>
<a href = "../../f_src/nco_triangle/nco_triangle.html">
NCO_TRIANGLE</a>,
a FORTRAN90 library which
defines Newton-Cotes open quadrature rules on a triangle.
</p>
<p>
<a href = "../../datasets/quadrature_rules_tri/quadrature_rules_tri.html">
QUADRATURE_RULES_TRI</a>,
a dataset directory which
contains triples of files which
defines various quadrature
rules on triangles.
</p>
<p>
<a href = "../../f_src/stroud/stroud.html">
STROUD</a>,
a FORTRAN90 library which
contains quadrature rules for a variety of unusual areas, surfaces and volumes in 2D,
3D and M-dimensions.
</p>
<p>
<a href = "../../f_src/test_tri_int/test_tri_int.html">
TEST_TRI_INT</a>,
a FORTRAN90 library which
tests algorithms for quadrature over a triangle.
</p>
<p>
<a href = "../../f77_src/toms612/toms612.html">
TOMS612</a>,
a FORTRAN77 library which
estimates the integral of a function over a triangle.
</p>
<p>
<a href = "../../f_src/triangle_exactness/triangle_exactness.html">
TRIANGLE_EXACTNESS</a>,
a FORTRAN90 program which
investigates the polynomial exactness of a quadrature rule for the triangle.
</p>
<p>
<a href = "../../f_src/triangle_monte_carlo/triangle_monte_carlo.html">
TRIANGLE_MONTE_CARLO</a>,
a FORTRAN90 program which
uses the Monte Carlo method to estimate integrals over a triangle.
</p>
<p>
<a href = "../../f_src/wandzura/wandzura.html">
WANDZURA</a>,
a FORTRAN90 library which
definines Wandzura rules for quadrature on a triangle.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
James Lyness, Dennis Jespersen,<br>
Moderate Degree Symmetric Quadrature Rules for the Triangle,<br>
Journal of the Institute of Mathematics and its Applications,<br>
Volume 15, Number 1, February 1975, pages 19-32.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "lyness_rule.f90">lyness_rule.f90</a>, the source code.
</li>
<li>
<a href = "lyness_rule.sh">lyness_rule.sh</a>,
BASH commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "lyness_rule_prb.f90">lyness_rule_prb.f90</a>,
a sample calling program.
</li>
<li>
<a href = "lyness_rule_prb.sh">lyness_rule_prb.sh</a>,
BASH commands to compile and run the sample program.
</li>
<li>
<a href = "lyness_rule_prb_output.txt">lyness_rule_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>I4_MODP</b> returns the nonnegative remainder of I4 division.
</li>
<li>
<b>I4_WRAP</b> forces an I4 to lie between given limits by wrapping.
</li>
<li>
<b>LYNESS_ORDER</b> returns the order of a Lyness quadrature rule.
</li>
<li>
<b>LYNESS_PRECISION</b> returns the precision of a Lyness quadrature rule.
</li>
<li>
<b>LYNESS_RULE</b> returns the points and weights of a Lyness quadrature rule.
</li>
<li>
<b>LYNESS_RULE_NUM</b> returns the number of Lyness quadrature rules.
</li>
<li>
<b>LYNESS_SUBORDER</b> returns the suborders for a Lyness rule.
</li>
<li>
<b>LYNESS_SUBORDER_NUM</b> returns the number of suborders for a Lyness rule.
</li>
<li>
<b>LYNESS_SUBRULE</b> returns a compressed Lyness rule.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 28 September 2010.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>