forked from johannesgerer/jburkardt-f
-
Notifications
You must be signed in to change notification settings - Fork 1
/
slatec.html
4802 lines (4762 loc) · 155 KB
/
slatec.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<html>
<head>
<title>
SLATEC - A Mathematical Library
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
SLATEC <br> A Mathematical Library
</h1>
<hr>
<p>
<b>SLATEC</b>
is a FORTRAN90 library which
contains a large amount of numerical software.
</p>
<p>
The orignal, correct version of SLATEC is as
a FORTRAN77 library. This library is available through NETLIB:
<a href = "http://www.netlib.org/slatec/index.html">
http://www.netlib.org/slatec/index.html</a>.
</p>
<p>
What you are seeing here is a version of the library that I
have lightly edited; a few changes have been made so that it
will compile as a FORTRAN90 program. However, this version is
not an official version, it is not supported by anybody, and
if you have any doubts about its accuracy, you should refer
to the original, correct FORTRAN77 version!
</p>
<p>
The huge size of the SLATEC library is both a plus (it has
everything) and a minus (there's so much here I can't find
what I'm looking for!) Since SLATEC is built, in large part,
from a number of smaller, specialized libraries, I would
strongly recommend that if your interests lie entirely within
one of those libraries, you try to find a copy of that library!
</p>
<p>
Another issue to keep in mind is the extraordinary complexity
of some of the routines. It is not unusual for a single routine
in the SLATEC library to call, directly or indirectly, thirty
or forty routines. In part, this is a testimony to the modularity
of the routines; however, it can make debugging a nightmare.
</p>
<p>
<b>SLATEC</b> includes
all or some of the following libraries:
<ul>
<li>
BLAS, basic linear algebra subprograms;
</li>
<li>
BVSUP, two point boundary value problems solved by superposition;
</li>
<li>
DASSL, for the solution of differential/algebraic systems;
</li>
<li>
DDRIVE/SDRIVE, for the solution of double precision or
single precision systems of ordinary differential equations;
</li>
<li>
DEPAC, for the solution of systems of differential equations;
</li>
<li>
DLAP/SLAP, for the solution of double precision or single
precision sparse systems of linear equations;
</li>
<li>
EISPACK, for the computation of eigenvalues and eigenvectors;
</li>
<li>
FFTPACK, for fast Fourier transforms;
</li>
<li>
FISHPACK, for solution of the Poisson equation;
</li>
<li>
FNLIB, the Fullerton special function library;
</li>
<li>
LINPACK, for solving systems of linear equations;
</li>
<li>
MACHINE, for "looking up" machine arithmetic constants;
</li>
<li>
MINPACK, for minimization (SNLS1, SNSQ);
</li>
<li>
MP, for Brent's multiple-precision arithmetic package;
</li>
<li>
PCHIP, for piecewise cubic Hermite interpolation;
</li>
<li>
PPPACK, for piecewise cubic polynomial interpolation;
</li>
<li>
QUADPACK, for quadrature over finite or infinite 1D intervals;
</li>
<li>
SOS, for square systems of nonlinear equations;
</li>
<li>
SPLP, for linear programming problems;
</li>
<li>
XERROR, for error handling.
</li>
</ul>
</p>
<p>
Some more information about the SLATEC library is available in
<ul>
<li>
<a href = "../../pdf/slatec_contents.pdf">
slatec_contents.pdf</a>
the contents of the SLATEC Library;
</li>
<li>
<a href = "../../pdf/slatec_guide.pdf">
slatec_guide.pdf</a>
A guide to the structure and format of the SLATEC library;
</li>
</ul>
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/blas/blas.html">
BLAS</a>,
a FORTRAN90 library which
contains the Basic Linear Algebra Subprograms (BLAS)
for level 1, 2 and 3, for single and double precision,
and for real and complex arithmetic.
</p>
<p>
<a href = "../../f_src/dlap/dlap.html">
DLAP</a>,
a FORTRAN90 library which
carries out the iterative solution of sparse linear systems,
by Anne Greenbaum and Mark Seager.
</p>
<p>
<a href = "../../f_src/eispack/eispack.html">
EISPACK</a>,
a FORTRAN90 library which
carries out eigenvalue computations;
superseded by LAPACK;
</p>
<p>
<a href = "../../f_src/fftpack5/fftpack5.html">
FFTPACK5</a>,
a FORTRAN90 library which
implements the Fast Fourier Transform (FFT)
by Paul Swarztrauber and Dick Valent;
</p>
<p>
<a href = "../../f_src/linpack/linpack.html">
LINPACK</a>,
a FORTRAN90 library which
contains linear algebra routines.
</p>
<p>
<a href = "../../f_src/machine/machine.html">
MACHINE</a>,
a FORTRAN90 library which
contains integer,
single precision real
and double precision real machine constants, and is included
in <b>SLATEC</b>.
</p>
<p>
<a href = "../../f_src/minpack/minpack.html">
MINPACK</a>,
a FORTRAN90 library which
solves systems of nonlinear equations, or the least squares minimization of the
residual of a set of linear or nonlinear equations.
</p>
<p>
<a href = "../../f_src/nms/nms.html">
NMS</a>,
a FORTRAN90 library which
includes a wide variety of numerical software, including
solvers for linear systems of equations, interpolation of data,
numerical quadrature, linear least squares data fitting,
the solution of nonlinear equations, ordinary differential equations,
optimization and nonlinear least squares, simulation and random numbers,
trigonometric approximation and Fast Fourier Transforms.
</p>
<p>
<a href = "../../f_src/pppack/pppack.html">
PPPACK</a>,
a FORTRAN90 library which
contains cubic spline and general
piecewise polynomial interpolation routines,
included in <b>SLATEC</b>.
</p>
<p>
<a href = "../../f_src/quadpack/quadpack.html">
QUADPACK</a>,
a FORTRAN90 library which
approximates integrals by numerical quadrature,
included in <b>SLATEC</b>.
</p>
<p>
<a href = "../../f_src/xerror/xerror.html">
XERROR</a>,
a FORTRAN90 library which
is designed to report and handle errors detected during program execution.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Richard Brent,<br>
A FORTRAN Multiple-Precision Arithmetic Package,<br>
ACM Transactions on Mathematical Software,<br>
Volume 4, Number 1, March 1978, pages 71-81.
</li>
<li>
Richard Brent,<br>
Algorithm 524:
MP: A FORTRAN Multiple-Precision Arithmetic Package,<br>
ACM Transactions on Mathematical Software,<br>
Volume 4, Number 1, March 1978, pages 57-70.
</li>
<li>
Bill Buzbee,<br>
The SLATEC Common Math Library,<br>
in Sources and Development of Mathematical Software,<br>
edited by Wayne Cowell,<br>
Prentice-Hall, 1984,<br>
ISBN: 0-13-823501-5,<br>
LC: QA76.95.S68.
</li>
<li>
Carl deBoor,<br>
A Practical Guide to Splines,<br>
Springer, 2001,<br>
ISBN: 0387953663,<br>
LC: QA1.A647.v27.
</li>
<li>
Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart,<br>
LINPACK User's Guide,<br>
SIAM, 1979,<br>
ISBN13: 978-0-898711-72-1.
</li>
<li>
Kirby Fong, Thomas Jefferson, Tokihiko Suyehiro, Lee Walton, <br>
Guide to the SLATEC Common Mathematical Library, <br>
April 10, 1990.
</li>
<li>
Phyllis Fox, Andrew Hall, Norman Schryer,<br>
Algorithm 528:</br>
Framework for a Portable Library,<br>
ACM Transactions on Mathematical Software,<br>
Volume 4, Number 2, June 1978, page 176-188.
</li>
<li>
Fred Fritsch, Ralph Carlson,<br>
Monotone Piecewise Cubic Interpolation,<br>
SIAM Journal on Numerical Analysis,<br>
Volume 17, Number 2, April 1980, pages 238-246.
</li>
<li>
Charles Gear,<br>
Numerical Initial Value Problems in Ordinary Differential
Equations,<br>
Prentice-Hall, 1971,<br>
ISBN: 0136266061,<br>
LC: QA372.G4.
</li>
<li>
Ron Jones, David Kahaner,<br>
XERROR, The SLATEC Error Handling Package,<br>
Technical Report SAND82-0800,<br>
Sandia Laboratories, 1982.
</li>
<li>
David Kahaner, Cleve Moler, Steven Nash,<br>
Numerical Methods and Software,<br>
Prentice Hall, 1989,<br>
ISBN: 0-13-627258-4,<br>
LC: TA345.K34.
</li>
<li>
Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,<br>
Algorithm 539:
Basic Linear Algebra Subprograms for Fortran Usage,<br>
ACM Transactions on Mathematical Software,<br>
Volume 5, Number 3, September 1979, pages 308-323.
</li>
<li>
Jorge More, Burton Garbow, Kenneth Hillstrom,<br>
User Guide for MINPACK-1,<br>
Technical Report ANL-80-74,<br>
Argonne National Laboratory, 1980.
</li>
<li>
Robert Piessens, Elise deDoncker-Kapenga,
Christian Ueberhuber, David Kahaner,<br>
QUADPACK: A Subroutine Package for Automatic Integration,<br>
Springer, 1983,<br>
ISBN: 3540125531,<br>
LC: QA299.3.Q36.
</li>
<li>
Mark Seager,<br>
A SLAP for the Masses,<br>
Technical Report UCRL-100267,<br>
Lawrence Livermore National Laboratory, December 1988.
</li>
<li>
Paul Swarztrauber,<br>
Vectorizing the FFT's,<br>
in Parallel Computations,<br>
edited by Garry Rodrigue,<br>
Academic Press, 1982,<br>
ISBN: 0125921012,<br>
LC: QA76.6.P348.
</li>
<li>
James Wilkinson, Christian Reinsch,<br>
Handbook for Automatic Computation,<br>
Volume II, Linear Algebra, Part 2,<br>
Springer, 1971,<br>
ISBN: 0387054146,<br>
LC: QA251.W67.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "slatec.f90">slatec.f90</a>, the source code.
</li>
<li>
<a href = "slatec.sh">slatec.sh</a>, commands to compile
the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<b>AIRY_PRB</b> just calls some routines that evaluate the Airy function.
<ul>
<li>
<a href = "airy_prb.f90">airy_prb.f90</a>, a sample problem.
</li>
<li>
<a href = "airy_prb.sh">airy_prb.sh</a>, commands to
compile, load and run the sample problem.
</li>
<li>
<a href = "airy_prb_output.txt">airy_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<p>
<b>SLATEC_PRB</b> is a large program that performs a lot
of tests on the routines.
<ul>
<li>
<a href = "slatec_prb.f90">slatec_prb.f90</a>, a sample problem.
</li>
<li>
<a href = "slatec_prb.sh">slatec_prb.sh</a>, commands to
compile, load and run the sample problem.
</li>
<li>
<a href = "slatec_prb_output.txt">slatec_prb_output.txt</a>
the output file.
</li>
</ul>
</p>
<p>
<b>MACHINE_PRB</b> just calls the routines from the MACHINE library.
<ul>
<li>
<a href = "machine_prb.f90">machine_prb.f90</a>, a sample problem.
</li>
<li>
<a href = "machine_prb.sh">machine_prb.sh</a>, commands to
compile, load and run the sample problem.
</li>
<li>
<a href = "machine_prb_output.txt">machine_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>AAAAAA</b> is the SLATEC Common Mathematical Library disclaimer and version.
</li>
<li>
<b>ACOSH</b> computes the arc hyperbolic cosine.
</li>
<li>
<b>AI</b> evaluates the Airy function.
</li>
<li>
<b>AIE</b> calculates the Airy function for a negative argument...
</li>
<li>
<b>ALBETA</b> computes the natural logarithm of the complete Beta function.
</li>
<li>
<b>ALGAMS</b> computes the logarithm of the absolute value of the Gamma function.
</li>
<li>
<b>ALI</b> computes the logarithmic integral.
</li>
<li>
<b>ALNGAM</b> computes the logarithm of the absolute value of the Gamma function.
</li>
<li>
<b>ALNREL</b> evaluates ln(1+X) accurate in the sense of relative error.
</li>
<li>
<b>ASINH</b> computes the arc hyperbolic sine.
</li>
<li>
<b>ASYIK</b> is subsidiary to BESI and BESK.
</li>
<li>
<b>ASYJY</b> is subsidiary to BESJ and BESY.
</li>
<li>
<b>ATANH</b> computes the arc hyperbolic tangent.
</li>
<li>
<b>AVINT</b> integrates a function tabulated at arbitrarily spaced abscissas...
</li>
<li>
<b>BAKVEC</b> forms the eigenvectors of a certain real non-symmetric tridiagonal
</li>
<li>
<b>BALANC</b> balances a real general matrix and isolates eigenvalues when possible.
</li>
<li>
<b>BALBAK</b> forms the eigenvectors of a real general matrix from the ...
</li>
<li>
<b>BANDR</b> reduces a real symmetric band matrix to symmetric tridiagonal ...
</li>
<li>
<b>BANDV</b> forms the eigenvectors of a real symmetric band matrix ...
</li>
<li>
<b>BCRH</b> is subsidiary to CBLKTR
</li>
<li>
<b>BDIFF</b> is subsidiary to BSKIN
</li>
<li>
<b>BESI</b> computes an N member sequence of I Bessel functions
</li>
<li>
<b>BESI0</b> computes the hyperbolic Bessel function of the first kind ...
</li>
<li>
<b>BESI0E</b> computes the exponentially scaled modified (hyperbolic) ...
</li>
<li>
<b>BESI1</b> computes the modified (hyperbolic) Bessel function of the ...
</li>
<li>
<b>BESI1E</b> computes the exponentially scaled modified (hyperbolic) ...
</li>
<li>
<b>BESJ</b> computes an N member sequence of J Bessel functions ...
</li>
<li>
<b>BESJ0</b> computes the Bessel function of the first kind of order zero.
</li>
<li>
<b>BESJ1</b> computes the Bessel function of the first kind of order one.
</li>
<li>
<b>BESK</b> implements forward recursion on the three term recursion ...
</li>
<li>
<b>BESK0</b> computes the modified (hyperbolic) Bessel function of the
</li>
<li>
<b>BESK0E</b> computes the exponentially scaled modified (hyperbolic)
</li>
<li>
<b>BESK1</b> computes the modified (hyperbolic) Bessel function of the
</li>
<li>
<b>BESK1E</b> computes the exponentially scaled modified (hyperbolic)
</li>
<li>
<b>BESKES</b> computes a sequence of exponentially scaled modified Bessel
</li>
<li>
<b>BESKNU</b> is subsidiary to BESK.
</li>
<li>
<b>BESKS</b> computes a sequence of modified Bessel functions of the
</li>
<li>
<b>BESY</b> implements forward recursion on the three term recursion ...
</li>
<li>
<b>BESY0</b> computes the Bessel function of the second kind of order zero.
</li>
<li>
<b>BESY1</b> computes the Bessel function of the second kind of order one.
</li>
<li>
<b>BESYNU</b> is subsidiary to BESY.
</li>
<li>
<b>BETA</b> computes the complete Beta function.
</li>
<li>
<b>BETAI</b> calculates the incomplete Beta function.
</li>
<li>
<b>BFQAD</b> computes the integral of a product of a function and a ...
</li>
<li>
<b>BI</b> evaluates the Bairy function (the Airy function of the second kind).
</li>
<li>
<b>BIE</b> calculates the Bairy function for a negative argument and an
</li>
<li>
<b>BINOM</b> computes the binomial coefficients.
</li>
<li>
<b>BINT4</b> computes the B-representation of a cubic spline ...
</li>
<li>
<b>BINTK</b> computes the B-representation of a spline which interpolates ...
</li>
<li>
<b>BISECT</b> computes the eigenvalues of a symmetric tridiagonal matrix ...
</li>
<li>
<b>BKIAS</b> is subsidiary to BSKIN.
</li>
<li>
<b>BKISR</b> is subsidiary to BSKIN.
</li>
<li>
<b>BKSOL</b> is subsidiary to BVSUP.
</li>
<li>
<b>BLKTR1</b> is subsidiary to BLKTRI.
</li>
<li>
<b>BLKTRI</b> solves a block tridiagonal system of linear equations ...
</li>
<li>
<b>BNDACC</b> computes the LU factorization of a banded matrices using ...
</li>
<li>
<b>BNDSOL</b> solves the least squares problem for a banded matrix using ...
</li>
<li>
<b>BNFAC</b> is subsidiary to BINT4 and BINTK.
</li>
<li>
<b>BNSLV</b> is subsidiary to BINT4 and BINTK.
</li>
<li>
<b>BQR</b> computes some of the eigenvalues of a real symmetric ...
</li>
<li>
<b>BSGQ8</b> is subsidiary to BFQAD.
</li>
<li>
<b>BSKIN</b> computes repeated integrals of the K-zero Bessel function.
</li>
<li>
<b>BSPDOC</b> is documentation for BSPLINE, a package of subprograms for ...
</li>
<li>
<b>BSPDR</b> uses the B-representation to construct a divided difference
</li>
<li>
<b>BSPEV</b> calculates the value of the spline and its derivatives from
</li>
<li>
<b>BSPLVD</b> is subsidiary to FC.
</li>
<li>
<b>BSPLVN</b> is subsidiary to FC.
</li>
<li>
<b>BSPPP</b> converts the B-representation of a B-spline to the piecewise ...
</li>
<li>
<b>BSPVD</b> calculates the value and all derivatives of order less than ...
</li>
<li>
<b>BSPVN</b> calculates the value of all (possibly) nonzero basis ...
</li>
<li>
<b>BSQAD</b> computes the integral of a K-th order B-spline using the ...
</li>
<li>
<b>BSRH</b> is subsidiary to BLKTRI.
</li>
<li>
<b>BVALU</b> evaluates the B-representation of a B-spline at X for the
</li>
<li>
<b>BVDER</b> is subsidiary to BVSUP.
</li>
<li>
<b>BVPOR</b> is subsidiary to BVSUP.
</li>
<li>
<b>BVSUP</b> solves a linear two-point boundary value problem using ...
</li>
<li>
<b>C0LGMC</b> evaluates (Z+0.5)*LOG((Z+1.)/Z) - 1.0 with relative accuracy.
</li>
<li>
<b>C1MERG</b> merges two strings of complex numbers. Each string is ...
</li>
<li>
<b>C9LGMC</b> computes the log gamma correction factor so that ...
</li>
<li>
<b>C9LN2R</b> evaluates LOG(1+Z) from second order relative accuracy so ...
</li>
<li>
<b>CACAI</b> is subsidiary to CAIRY.
</li>
<li>
<b>CACON</b> is subsidiary to CBESH and CBESK.
</li>
<li>
<b>CACOS</b> computes the complex arc cosine.
</li>
<li>
<b>CACOSH</b> computes the arc hyperbolic cosine.
</li>
<li>
<b>CAIRY</b> computes the Airy function Ai(z) or its derivative dAi/dz ...
</li>
<li>
<b>CARG</b> computes the argument of a complex number.
</li>
<li>
<b>CASIN</b> computes the complex arc sine.
</li>
<li>
<b>CASINH</b> computes the arc hyperbolic sine.
</li>
<li>
<b>CASYI</b> is subsidiary to CBESI and CBESK.
</li>
<li>
<b>CATAN</b> computes the complex arc tangent.
</li>
<li>
<b>CATAN2</b> computes the complex arc tangent in the proper quadrant.
</li>
<li>
<b>CATANH</b> computes the arc hyperbolic tangent.
</li>
<li>
<b>CAXPY</b> computes a constant times a vector plus a vector.
</li>
<li>
<b>CBABK2</b> forms the eigenvectors of a complex general matrix from the ...
</li>
<li>
<b>CBAL</b> balances a complex general matrix and isolates eigenvalues ...
</li>
<li>
<b>CBESH</b> computes a sequence of the Hankel functions H(m,a,z) ...
</li>
<li>
<b>CBESI</b> computes a sequence of the Bessel functions I(a,z) for ...
</li>
<li>
<b>CBESJ</b> computes a sequence of the Bessel functions J(a,z) for ...
</li>
<li>
<b>CBESK</b> computes a sequence of the Bessel functions K(a,z) for ...
</li>
<li>
<b>CBESY</b> computes a sequence of the Bessel functions Y(a,z) for ...
</li>
<li>
<b>CBETA</b> computes the complete Beta function.
</li>
<li>
<b>CBINU</b> is subsidiary to CAIRY, CBESH, CBESI, CBESJ, CBESK and CBIRY.
</li>
<li>
<b>CBIRY</b> computes the Airy function Bi(z) or its derivative dBi/dz ...
</li>
<li>
<b>CBKNU</b> is subsidiary to CAIRY, CBESH, CBESI and CBESK.
</li>
<li>
<b>CBLKT1</b> is subsidiary to CBLKTR.
</li>
<li>
<b>CBLKTR</b> solves a block tridiagonal system of linear equations ...
</li>
<li>
<b>CBRT</b> computes the cube root.
</li>
<li>
<b>CBUNI</b> is subsidiary to CBESI and CBESK.
</li>
<li>
<b>CBUNK</b> is subsidiary to CBESH and CBESK.
</li>
<li>
<b>CCBRT</b> computes the cube root.
</li>
<li>
<b>CCHDC</b> computes the Cholesky decomposition of a positive definite ...
</li>
<li>
<b>CCHDD</b> downdates an augmented Cholesky decomposition or the ...
</li>
<li>
<b>CCHEX</b> updates the Cholesky factorization A=TRANS(R)*R of a ...
</li>
<li>
<b>CCHUD</b> updates an augmented Cholesky decomposition of the ...
</li>
<li>
<b>CCMPB</b> is subsidiary to CBLKTR.
</li>
<li>
<b>CCOPY</b> copies a vector.
</li>
<li>
<b>CCOSH</b> computes the complex hyperbolic cosine.
</li>
<li>
<b>CCOT</b> computes the cotangent.
</li>
<li>
<b>CDCDOT</b> computes the inner product of two vectors with extended ...
</li>
<li>
<b>CDCOR</b> computes corrections to the Y array.
</li>
<li>
<b>CDCST</b> sets coefficients used by the core integrator CDSTP.
</li>
<li>
<b>CDIV</b> computes the complex quotient of two complex numbers.
</li>
<li>
<b>CDNTL</b> sets parameters on the first call to CDSTP, on an internal ...
</li>
<li>
<b>CDNTP</b> interpolates the K-th derivative of Y at TOUT, using the data ...
</li>
<li>
<b>CDOTC</b> computes the dot product of two complex vectors using the complex ...
</li>
<li>
<b>CDOTU</b> computes the inner product of two vectors.
</li>
<li>
<b>CDPSC</b> computes the predicted YH values by effectively multiplying ...
</li>
<li>
<b>CDPST</b> evaluates the Jacobian matrix of the right hand side ...
</li>
<li>
<b>CDRIV1</b> solves N (200 or fewer) ordinary differential equations ...
</li>
<li>
<b>CDRIV2</b> solves N ordinary differential equations of the form ...
</li>
<li>
<b>CDRIV3</b> solves N ordinary differential equations of the form ...
</li>
<li>
<b>CDSCL</b> rescales the YH array whenever the step size is changed.
</li>
<li>
<b>CDSTP</b> performs one step of the integration of an initial value problem ...
</li>
<li>
<b>CDZRO</b> searches for a zero of a function F(N, T, Y, IROOT) ...
</li>
<li>
<b>CEXPRL</b> calculates the relative error exponential (EXP(X)-1)/X.
</li>
<li>
<b>CFFTB</b> computes the unnormalized inverse of CFFTF.
</li>
<li>
<b>CFFTB1</b> computes the unnormalized inverse of CFFTF1.
</li>
<li>
<b>CFFTF</b> computes the forward transform of a complex, periodic sequence.
</li>
<li>
<b>CFFTF1</b> computes the forward transform of a complex, periodic sequence.
</li>
<li>
<b>CFFTI</b> initializes a work array for CFFTF and CFFTB.
</li>
<li>
<b>CFFTI1</b> initializes a real and an integer work array for CFFTF1 and CFFTB1.
</li>
<li>
<b>CFOD</b> is subsidiary to DEBDF.
</li>
<li>
<b>CG</b> computes the eigenvalues and, optionally, the eigenvectors ...
</li>
<li>
<b>CGAMMA</b> computes the complete Gamma function.
</li>
<li>
<b>CGAMR</b> computes the reciprocal of the Gamma function.
</li>
<li>
<b>CGBCO</b> factors a band matrix by Gaussian elimination and ...
</li>
<li>
<b>CGBDI</b> computes the determinant of a complex band matrix using the ...
</li>
<li>
<b>CGBFA</b> factors a band matrix using Gaussian elimination.
</li>
<li>
<b>CGBMV</b> multiplies a complex vector by a complex general band matrix.
</li>
<li>
<b>CGBSL</b> solves the complex band system A*X=B or CTRANS(A)*X=B using ...
</li>
<li>
<b>CGECO</b> factors a matrix using Gaussian elimination and estimates ...
</li>
<li>
<b>CGEDI</b> computes the determinant and inverse of a matrix using the ...
</li>
<li>
<b>CGEEV</b> computes the eigenvalues and, optionally, the eigenvectors ...
</li>
<li>
<b>CGEFA</b> factors a matrix using Gaussian elimination.
</li>
<li>
<b>CGEFS</b> solves a general system of linear equations.
</li>
<li>
<b>CGEIR</b> solves a general system of linear equations. Iterative ...
</li>
<li>
<b>CGEMM</b> multiplies a complex general matrix by a complex general matrix.
</li>
<li>
<b>CGEMV</b> multiplies a complex vector by a complex general matrix.
</li>
<li>
<b>CGERC</b> performs conjugated rank 1 update of a complex general matrix.
</li>
<li>
<b>CGERU</b> performs unconjugated rank 1 update of a complex general matrix.
</li>
<li>
<b>CGESL</b> solves the complex system A*X=B or CTRANS(A)*X=B using the ...
</li>
<li>
<b>CGTSL</b> solves a tridiagonal linear system.
</li>
<li>
<b>CH</b> computes the eigenvalues and, optionally, the eigenvectors ...
</li>
<li>
<b>CHBMV</b> multiplies a complex vector by a complex Hermitian band matrix.
</li>
<li>
<b>CHEMM</b> multiplies a complex general matrix by a complex Hermitian matrix.
</li>
<li>
<b>CHEMV</b> multiplies a complex vector by a complex Hermitian matrix.
</li>
<li>
<b>CHER</b> performs Hermitian rank 1 update of a complex Hermitian matrix.
</li>
<li>
<b>CHER2</b> performs Hermitian rank 2 update of a complex Hermitian matrix.
</li>
<li>
<b>CHER2K</b> performs Hermitian rank 2k update of a complex Hermitian matrix.
</li>
<li>
<b>CHERK</b> performs Hermitian rank k update of a complex Hermitian matrix.
</li>
<li>
<b>CHFCM</b> checks a single cubic for monotonicity.
</li>
<li>
<b>CHFDV</b> evaluates a cubic polynomial given in Hermite form and its ...
</li>
<li>
<b>CHFEV</b> evaluates a cubic polynomial given in Hermite form at an ...
</li>
<li>
<b>CHFIE</b> evaluates the integral of a single cubic for PCHIA.
</li>
<li>
<b>CHICO</b> factors a complex Hermitian matrix by elimination with symmetric ...
</li>
<li>
<b>CHIDI</b> computes the determinant, inertia and inverse of a complex ...
</li>
<li>
<b>CHIEV</b> computes the eigenvalues and, optionally, the eigenvectors ...
</li>
<li>
<b>CHIFA</b> factors a complex Hermitian matrix by elimination (symmetric pivoting).
</li>
<li>
<b>CHISL</b> solves the complex Hermitian system using factors obtained from CHIFA.
</li>
<li>
<b>CHKDER</b> checks the gradients of M nonlinear functions in N variables, ...
</li>
<li>
<b>CHKPR4</b> subsidiary to SEPX4.
</li>
<li>
<b>CHKPRM</b> is subsidiary to SEPELI.
</li>
<li>
<b>CHKSN4</b> is subsidiary to SEPX4.
</li>
<li>
<b>CHKSNG</b> is subsidiary to SEPELI.
</li>
<li>
<b>CHPCO</b> factors a complex Hermitian matrix stored in packed form by ...
</li>
<li>
<b>CHPDI</b> computes the determinant, inertia and inverse of a complex ...