forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInfoGAN-mnist.py
executable file
·233 lines (188 loc) · 8.89 KB
/
InfoGAN-mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: InfoGAN-mnist.py
# Author: Yuxin Wu <ppwwyyxxc@gmail.com>
import cv2
import numpy as np
import tensorflow as tf
import os
import sys
import argparse
from tensorpack import *
from tensorpack.utils.viz import *
from tensorpack.tfutils.distributions import *
import tensorpack.tfutils.symbolic_functions as symbf
from tensorpack.tfutils.gradproc import ScaleGradient, CheckGradient
from GAN import GANTrainer, GANModelDesc
"""
To train:
./InfoGAN-mnist.py
To visualize:
./InfoGAN-mnist.py --sample --load path/to/model
A pretrained model is at https://drive.google.com/open?id=0B9IPQTvr2BBkLUF2M0RXU1NYSkE
"""
BATCH = 128
NOISE_DIM = 62
class GaussianWithUniformSample(GaussianDistribution):
"""
OpenAI official code actually models the "uniform" latent code as
a Gaussian distribution, but obtain the samples from a uniform distribution.
We follow the official code for now.
"""
def _sample(self, batch_size, theta):
return tf.random_uniform([batch_size, self.dim], -1, 1)
class Model(GANModelDesc):
def _get_inputs(self):
return [InputDesc(tf.float32, (None, 28, 28), 'input')]
def generator(self, z):
l = FullyConnected('fc0', z, 1024, nl=BNReLU)
l = FullyConnected('fc1', l, 128 * 7 * 7, nl=BNReLU)
l = tf.reshape(l, [-1, 7, 7, 128])
l = Deconv2D('deconv1', l, [14, 14, 64], 4, 2, nl=BNReLU)
l = Deconv2D('deconv2', l, [28, 28, 1], 4, 2, nl=tf.identity)
l = tf.sigmoid(l, name='gen')
return l
def discriminator(self, imgs):
with argscope(Conv2D, nl=tf.identity, kernel_shape=4, stride=2), \
argscope(LeakyReLU, alpha=0.2):
l = (LinearWrap(imgs)
.Conv2D('conv0', 64)
.LeakyReLU()
.Conv2D('conv1', 128)
.BatchNorm('bn1').LeakyReLU()
.FullyConnected('fc1', 1024, nl=tf.identity)
.BatchNorm('bn2').LeakyReLU()())
logits = FullyConnected('fct', l, 1, nl=tf.identity)
encoder = (LinearWrap(l)
.FullyConnected('fce1', 128, nl=tf.identity)
.BatchNorm('bne').LeakyReLU()
.FullyConnected('fce-out', self.factors.param_dim, nl=tf.identity)())
return logits, encoder
def _build_graph(self, inputs):
real_sample = inputs[0]
real_sample = tf.expand_dims(real_sample, -1)
# latent space is cat(10) x uni(1) x uni(1) x noise(NOISE_DIM)
self.factors = ProductDistribution("factors", [CategoricalDistribution("cat", 10),
GaussianWithUniformSample("uni_a", 1),
GaussianWithUniformSample("uni_b", 1)])
# prior: the assumption how the factors are presented in the dataset
prior = tf.constant([0.1] * 10 + [0, 0], tf.float32, [12], name='prior')
batch_prior = tf.tile(tf.expand_dims(prior, 0), [BATCH, 1], name='batch_prior')
# sample the latent code:
zc = symbf.shapeless_placeholder(
self.factors.sample(BATCH, prior), 0, name='z_code')
z_noise = symbf.shapeless_placeholder(
tf.random_uniform([BATCH, NOISE_DIM], -1, 1), 0, name='z_noise')
z = tf.concat([zc, z_noise], 1, name='z')
with argscope([Conv2D, Deconv2D, FullyConnected],
W_init=tf.truncated_normal_initializer(stddev=0.02)):
with tf.variable_scope('gen'):
fake_sample = self.generator(z)
fake_sample_viz = tf.cast((fake_sample) * 255.0, tf.uint8, name='viz')
tf.summary.image('gen', fake_sample_viz, max_outputs=30)
# may need to investigate how bn stats should be updated across two discrim
with tf.variable_scope('discrim'):
real_pred, _ = self.discriminator(real_sample)
with tf.variable_scope('discrim', reuse=True):
fake_pred, dist_param = self.discriminator(fake_sample)
"""
Mutual information between x (i.e. zc in this case) and some
information s (the generated samples in this case):
I(x;s) = H(x) - H(x|s)
= H(x) + E[\log P(x|s)]
The distribution from which zc is sampled, in this case, is set to a fixed prior already.
For the second term, we can maximize its variational lower bound:
E_{x \sim P(x|s)}[\log Q(x|s)]
where Q(x|s) is a proposal distribution to approximate P(x|s).
Here, Q(x|s) is assumed to be a distribution which shares the form
of self.factors, and whose parameters are predicted by the discriminator network.
"""
with tf.name_scope("mutual_information"):
ents = self.factors.entropy(zc, batch_prior)
entropy = tf.add_n(ents, name='total_entropy')
# Note that dropping this term has no effect because the entropy
# of prior is a constant. The paper mentioned it but didn't use it.
# Adding this term may make the curve less stable because the
# entropy estimated from the samples is not the true value.
# post-process output vector from discriminator to obtain valid distribution parameters
encoder_activation = self.factors.encoder_activation(dist_param)
cond_ents = self.factors.entropy(zc, encoder_activation)
cond_entropy = tf.add_n(cond_ents, name="total_conditional_entropy")
MI = tf.subtract(entropy, cond_entropy, name='mutual_information')
summary.add_moving_summary(entropy, cond_entropy, MI, *ents)
# default GAN objective
self.build_losses(real_pred, fake_pred)
# subtract mutual information for latent factors (we want to maximize them)
self.g_loss = tf.subtract(self.g_loss, MI, name='total_g_loss')
self.d_loss = tf.subtract(self.d_loss, MI, name='total_d_loss')
summary.add_moving_summary(self.g_loss, self.d_loss)
# distinguish between variables of generator and discriminator updates
self.collect_variables()
def _get_optimizer(self):
lr = symbf.get_scalar_var('learning_rate', 2e-4, summary=True)
opt = tf.train.AdamOptimizer(lr, beta1=0.5, epsilon=1e-6)
# generator learns 5 times faster
return optimizer.apply_grad_processors(
opt, [gradproc.ScaleGradient(('gen/.*', 5), log=True)])
def get_data():
ds = ConcatData([dataset.Mnist('train'), dataset.Mnist('test')])
ds = BatchData(ds, BATCH)
return ds
def get_config():
logger.auto_set_dir()
return TrainConfig(
dataflow=get_data(),
callbacks=[ModelSaver(keep_freq=0.1)],
model=Model(),
steps_per_epoch=500,
max_epoch=100,
)
def sample(model_path):
pred = OfflinePredictor(PredictConfig(
session_init=get_model_loader(model_path),
model=Model(),
input_names=['z_code', 'z_noise'],
output_names=['gen/viz']))
# sample all one-hot encodings (10 times)
z_cat = np.tile(np.eye(10), [10, 1])
# sample continuos variables from -2 to +2 as mentioned in the paper
z_uni = np.linspace(-2.0, 2.0, num=100)
z_uni = z_uni[:, None]
IMG_SIZE = 400
while True:
# only categorical turned on
z_noise = np.random.uniform(-1, 1, (100, NOISE_DIM))
zc = np.concatenate((z_cat, z_uni * 0, z_uni * 0), axis=1)
o = pred(zc, z_noise)[0]
viz1 = stack_patches(o, nr_row=10, nr_col=10)
viz1 = cv2.resize(viz1, (IMG_SIZE, IMG_SIZE))
# show effect of first continous variable with fixed noise
zc = np.concatenate((z_cat, z_uni, z_uni * 0), axis=1)
o = pred(zc, z_noise * 0)[0]
viz2 = stack_patches(o, nr_row=10, nr_col=10)
viz2 = cv2.resize(viz2, (IMG_SIZE, IMG_SIZE))
# show effect of second continous variable with fixed noise
zc = np.concatenate((z_cat, z_uni * 0, z_uni), axis=1)
o = pred(zc, z_noise * 0)[0]
viz3 = stack_patches(o, nr_row=10, nr_col=10)
viz3 = cv2.resize(viz3, (IMG_SIZE, IMG_SIZE))
viz = stack_patches(
[viz1, viz2, viz3],
nr_row=1, nr_col=3, border=5, bgcolor=(255, 0, 0))
interactive_imshow(viz)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--load', help='load model')
parser.add_argument('--sample', action='store_true', help='visualize the space of the 10 latent codes')
args = parser.parse_args()
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
if args.sample:
BATCH = 100
sample(args.load)
else:
config = get_config()
if args.load:
config.session_init = SaverRestore(args.load)
GANTrainer(config).train()