-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
145 lines (130 loc) · 8.78 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from app_model import AppModel
from app_utils import *
from controlnet.app_canny import create_demo_canny
from controlnet.app_depth import create_demo_depth
from controlnet.app_ip2p import create_demo_ip2p
from controlnet.app_lineart import create_demo_lineart
from controlnet.app_mlsd import create_demo_mlsd
from controlnet.app_normal import create_demo_normal
from controlnet.app_openpose import create_demo_openpose
from controlnet.app_scribble import create_demo_scribble
from controlnet.app_scribble_interactive import create_demo_scribble_interactive
from controlnet.app_segmentation import create_demo_segmentation
from controlnet.app_shuffle import create_demo_shuffle
from controlnet.app_softedge import create_demo_softedge
from fairseq import options
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.distributed import utils as distributed_utils
def main(cfg):
appmodel = AppModel(cfg)
with gr.Blocks() as app:
with gr.Row():
with gr.Column(scale=5):
ckpt = gr.Textbox(value=cfg.model.pretrained_ckpt_path, show_label=False, container=False)
with gr.Column(scale=4):
current_ckpt = gr.Textbox(show_label=False, container=False)
with gr.Column(scale=1, min_width=100):
scheduler = gr.Dropdown(['dpms', 'pndm', 'ddim'], value='dpms', show_label=False, container=False,
min_width=60)
with gr.Row():
with gr.Column(scale=5):
lora = gr.Dropdown(['None'] + appmodel.get_available_lora(), value=cfg.model.lora_name,
show_label=False, container=False)
with gr.Column(scale=4):
current_lora = gr.Textbox(show_label=False, container=False)
with gr.Column(scale=1, min_width=60):
set_ckpt_scheduler_button = gr.Button('Set', container=False, min_width=60)
set_ckpt_scheduler_button.click(
fn=appmodel.set_ckpt_scheduler_fn, inputs=[ckpt, scheduler], outputs=current_ckpt, queue=False
).then(fn=appmodel.load_lora, inputs=lora, outputs=current_lora, queue=False)
with gr.Tabs():
with gr.TabItem('KOSMOS-G'):
with gr.Blocks():
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt", max_lines=1,
placeholder="Use <i> to represent the images in prompt")
num_input_images = gr.Slider(1, MAX_INPUT_IMAGES, value=DEFAULT_INPUT_IMAGES, step=1,
label="Number of input images:")
input_images = [gr.Image(label=f'img{i}', type="pil",
visible=True if i < DEFAULT_INPUT_IMAGES else False)
for i in range(MAX_INPUT_IMAGES)]
num_input_images.change(variable_images, num_input_images, input_images)
text_guidance_scale = gr.Slider(1, 15, value=6, step=0.5, label="Text Guidance Scale")
seed = gr.Slider(label="Seed", minimum=MIN_SEED, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label='Randomize seed', value=True)
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
lora_scale = gr.Slider(0, 1, value=0, step=0.05, label="LoRA Scale")
num_inference_steps = gr.Slider(label="num_inference_steps", minimum=10, maximum=100,
value=50, step=5)
negative_prompt = gr.Textbox(label="Negative Prompt", max_lines=1, value="")
num_images_per_prompt = gr.Slider(1, MAX_IMAGES_PER_PROMPT,
value=4, step=1, label="Number of Images")
with gr.Column(scale=2):
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery",
columns=2, height='100%')
ips = [prompt, lora_scale, num_inference_steps, text_guidance_scale, negative_prompt,
num_images_per_prompt, *input_images]
prompt.submit(
fn=appmodel.set_ckpt_scheduler_fn, inputs=[ckpt, scheduler], outputs=current_ckpt, queue=False
).then(fn=appmodel.load_lora, inputs=lora, outputs=current_lora, queue=False).then(
fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False
).then(fn=appmodel.kosmosg_generation, inputs=ips, outputs=result_gallery)
run_button.click(
fn=appmodel.set_ckpt_scheduler_fn, inputs=[ckpt, scheduler], outputs=current_ckpt, queue=False
).then(fn=appmodel.load_lora, inputs=lora, outputs=current_lora, queue=False).then(
fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False
).then(fn=appmodel.kosmosg_generation, inputs=ips, outputs=result_gallery)
gr.Examples(
examples=[
['<i>', 'appimg/dog.jpg', None],
['<i> swimming underwater', 'appimg/dog.jpg', None],
['<i> in Batman suit', 'appimg/dog.jpg', None],
['<i> as an oil painting by Vincent van Gogh', 'appimg/dog.jpg', None],
['<i> in Minecraft', 'appimg/dog.jpg', None],
['<i> in the suit of <i>', 'appimg/dog2.jpg', 'appimg/ironman.jpg'],
['<i> in Unity3D', 'appimg/car.jpg', None],
['<i>', 'appimg/bengio.jpg', None],
['<i> as an oil painting in the style of <i>', 'appimg/bengio.jpg', 'appimg/vangogh.jpg'],
['<i> wearing <i>', 'appimg/bengio.jpg', 'appimg/sunglasses.jpg'],
['<i> in <i>\'s jacket', 'appimg/bengio.jpg', 'appimg/huang.jpg'],
['<i> taking a selfie at <i>', 'appimg/bengio.jpg', 'appimg/ijen.jpg'],
['<i> in the style of <i>', 'appimg/bengio.jpg', 'appimg/uname.jpg'],
],
inputs=[prompt, input_images[0], input_images[1]],
cache_examples=False,
examples_per_page=100
)
with gr.TabItem('ControlNet KOSMOS-G'):
with gr.Tabs():
with gr.TabItem('Canny'):
create_demo_canny(appmodel.controlnet_generation_canny)
with gr.TabItem('MLSD'):
create_demo_mlsd(appmodel.controlnet_generation_mlsd)
with gr.TabItem('Scribble'):
create_demo_scribble(appmodel.controlnet_generation_scribble)
with gr.TabItem('Scribble Interactive'):
create_demo_scribble_interactive(appmodel.controlnet_generation_scribble_interactive)
with gr.TabItem('SoftEdge'):
create_demo_softedge(appmodel.controlnet_generation_softedge)
with gr.TabItem('OpenPose'):
create_demo_openpose(appmodel.controlnet_generation_openpose)
with gr.TabItem('Segmentation'):
create_demo_segmentation(appmodel.controlnet_generation_segmentation)
with gr.TabItem('Depth'):
create_demo_depth(appmodel.controlnet_generation_depth)
with gr.TabItem('Normal map'):
create_demo_normal(appmodel.controlnet_generation_normal)
with gr.TabItem('Lineart'):
create_demo_lineart(appmodel.controlnet_generation_lineart)
with gr.TabItem('Content Shuffle'):
create_demo_shuffle(appmodel.controlnet_generation_shuffle)
with gr.TabItem('Instruct Pix2Pix'):
create_demo_ip2p(appmodel.controlnet_generation_ip2p)
app.queue(concurrency_count=1).launch(share=True)
if __name__ == "__main__":
parser = options.get_training_parser()
args = options.parse_args_and_arch(parser, modify_parser=None)
cfg = convert_namespace_to_omegaconf(args)
distributed_utils.call_main(cfg, main)