-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.go
182 lines (171 loc) · 4.25 KB
/
main.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
package main
import "fmt"
// There are N students in a class. Some of them are friends, while some are not.
// Their friendship is transitive in nature. For example, if A is a direct friend of B,
// and B is a direct friend of C, then A is an indirect friend of C. And we defined a
// friend circle is a group of students who are direct or indirect friends.
//
// Given a N*N matrix M representing the friend relationship between students in the class.
// If M[i][j] = 1, then the ith and jth students are direct friends with each other, otherwise not.
// And you have to output the total number of friend circles among all the students.
//
// Example 1:
// Input:
// [[1,1,0],
// [1,1,0],
// [0,0,1]]
// Output: 2
// Explanation:The 0th and 1st students are direct friends, so they are in a friend circle.
// The 2nd student himself is in a friend circle. So return 2.
//
// Example 2:
// Input:
// [[1,1,0],
// [1,1,1],
// [0,1,1]]
// Output: 1
// Explanation:The 0th and 1st students are direct friends, the 1st and 2nd students are direct friends,
// so the 0th and 2nd students are indirect friends. All of them are in the same friend circle, so return 1.
//
// Note:
// N is in range [1,200].
// M[i][i] = 1 for all students.
// If M[i][j] = 1, then M[j][i] = 1.
// 42s, 100%, really that fast?
// quick-find actually, check two student whether is friend is fast
// can't believe quick-find is fastest, must be the testdata is perfect for quick-find
func findCircleNum(M [][]int) int {
var ret = len(M)
cycle := make([]int, ret)
for i := 0; i < ret; i++ {
cycle[i] = i
}
var union = func(s, d int) {
for i, v := range cycle {
if v == s {
cycle[i] = d
}
}
}
for i := 0; i < len(M); i++ {
for j := i + 1; j < len(M[i]); j++ {
if M[i][j] == 1 {
if cycle[i] != cycle[j] {
ret--
union(cycle[j], cycle[i])
}
}
}
}
return ret
}
// quick-union
// 56ms
func findCircleNum2(M [][]int) int {
var ret = len(M)
cycle := make([]int, ret)
for i := 0; i < ret; i++ {
cycle[i] = i
}
// find root
var find = func(s int) int {
for s != cycle[s] {
s = cycle[s]
}
return s
}
for i := 0; i < len(M); i++ {
for j := i + 1; j < len(M[i]); j++ {
if M[i][j] == 1 {
if ri, rj := find(i), find(j); ri != rj {
ret--
cycle[rj] = i
}
}
}
}
return ret
}
// wighted quick-union
// 52ms
func findCircleNum3(M [][]int) int {
var ret = len(M)
cycle := make([]int, ret)
size := make([]int, ret)
for i := 0; i < ret; i++ {
cycle[i] = i
size[i] = 1
}
// find root
//var find = func(s int) int {
// for s != cycle[s] {
// s = cycle[s]
// }
// return s
//}
// path compression
// worse? 62ms?
var find = func(s int) int {
t := s
for s != cycle[s] {
s = cycle[s]
}
cycle[t] = s
return s
}
for i := 0; i < len(M); i++ {
for j := i + 1; j < len(M[i]); j++ {
if M[i][j] == 1 {
if ri, rj := find(i), find(j); ri != rj {
ret--
if size[i] < size[j] {
cycle[ri] = j
size[j] += size[i]
} else {
cycle[rj] = i
size[i] += size[j]
}
}
}
}
}
return ret
}
func main() {
friends := [][]int{
{1, 1, 0},
{1, 1, 0},
{0, 0, 1},
}
fmt.Println(findCircleNum(friends))
fmt.Println(findCircleNum2(friends))
fmt.Println(findCircleNum3(friends))
friends = [][]int{
{1, 1, 0},
{1, 1, 1},
{0, 1, 1},
}
fmt.Println(findCircleNum(friends))
fmt.Println(findCircleNum2(friends))
fmt.Println(findCircleNum3(friends))
friends = [][]int{
{1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0},
{1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0},
{1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0},
{0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1},
{0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1},
}
fmt.Println(findCircleNum(friends))
fmt.Println(findCircleNum2(friends))
fmt.Println(findCircleNum3(friends))
}