-
Notifications
You must be signed in to change notification settings - Fork 274
/
batch_inference.py
491 lines (428 loc) · 16.7 KB
/
batch_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
from argparse import ArgumentParser
from pathlib import Path
from typing import Dict, List, Optional, TextIO, Tuple
import torch
from PIL import Image, UnidentifiedImageError
from torch import Tensor
from torch.nn import Module, Parameter
from torch.nn.functional import relu, sigmoid
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
import torch.nn.functional as F
import os
import json
from ram import get_transform
from ram.models import ram_plus, ram, tag2text
from ram.utils import build_openset_llm_label_embedding, build_openset_label_embedding, get_mAP, get_PR
device = "cuda" if torch.cuda.is_available() else "cpu"
class _Dataset(Dataset):
def __init__(self, imglist, input_size):
self.imglist = imglist
self.transform = get_transform(input_size)
def __len__(self):
return len(self.imglist)
def __getitem__(self, index):
try:
img = Image.open(self.imglist[index]+".jpg")
except (OSError, FileNotFoundError, UnidentifiedImageError):
img = Image.new('RGB', (10, 10), 0)
print("Error loading image:", self.imglist[index])
return self.transform(img)
def parse_args():
parser = ArgumentParser()
# model
parser.add_argument("--model-type",
type=str,
choices=("ram_plus", "ram", "tag2text"),
required=True)
parser.add_argument("--checkpoint",
type=str,
required=True)
parser.add_argument("--backbone",
type=str,
choices=("swin_l", "swin_b"),
default=None,
help="If `None`, will judge from `--model-type`")
parser.add_argument("--open-set",
action="store_true",
help=(
"Treat all categories in the taglist file as "
"unseen and perform open-set classification. Only "
"works with RAM."
))
# data
parser.add_argument("--dataset",
type=str,
choices=(
"openimages_common_214",
"openimages_rare_200"
),
required=True)
parser.add_argument("--input-size",
type=int,
default=384)
# threshold
group = parser.add_mutually_exclusive_group()
group.add_argument("--threshold",
type=float,
default=None,
help=(
"Use custom threshold for all classes. Mutually "
"exclusive with `--threshold-file`. If both "
"`--threshold` and `--threshold-file` is `None`, "
"will use a default threshold setting."
))
group.add_argument("--threshold-file",
type=str,
default=None,
help=(
"Use custom class-wise thresholds by providing a "
"text file. Each line is a float-type threshold, "
"following the order of the tags in taglist file. "
"See `ram/data/ram_tag_list_threshold.txt` as an "
"example. Mutually exclusive with `--threshold`. "
"If both `--threshold` and `--threshold-file` is "
"`None`, will use default threshold setting."
))
# miscellaneous
parser.add_argument("--output-dir", type=str, default="./outputs")
parser.add_argument("--batch-size", type=int, default=128)
parser.add_argument("--num-workers", type=int, default=4)
args = parser.parse_args()
# post process and validity check
args.model_type = args.model_type.lower()
assert not (args.model_type == "tag2text" and args.open_set)
if args.backbone is None:
args.backbone = "swin_l" if args.model_type == "ram_plus" or args.model_type == "ram" else "swin_b"
return args
def load_dataset(
dataset: str,
model_type: str,
input_size: int,
batch_size: int,
num_workers: int
) -> Tuple[DataLoader, Dict]:
dataset_root = str(Path(__file__).resolve().parent / "datasets" / dataset)
img_root = dataset_root + "/imgs"
# Label system of tag2text contains duplicate tag texts, like
# "train" (noun) and "train" (verb). Therefore, for tag2text, we use
# `tagid` instead of `tag`.
if model_type == "ram_plus" or model_type == "ram":
tag_file = dataset_root + f"/{dataset}_ram_taglist.txt"
annot_file = dataset_root + f"/{dataset}_ram_annots.txt"
else:
tag_file = dataset_root + f"/{dataset}_tag2text_tagidlist.txt"
annot_file = dataset_root + f"/{dataset}_{model_type}_idannots.txt"
with open(tag_file, "r", encoding="utf-8") as f:
taglist = [line.strip() for line in f]
with open(annot_file, "r", encoding="utf-8") as f:
imglist = [img_root + "/" + line.strip().split(",")[0] for line in f]
loader = DataLoader(
dataset=_Dataset(imglist,input_size),
shuffle=False,
drop_last=False,
pin_memory=True,
batch_size=batch_size,
num_workers=num_workers
)
open_tag_des = dataset_root + f"/{dataset}_llm_tag_descriptions.json"
if os.path.exists(open_tag_des):
with open(open_tag_des, 'rb') as fo:
tag_des = json.load(fo)
else:
tag_des = None
info = {
"taglist": taglist,
"imglist": imglist,
"annot_file": annot_file,
"img_root": img_root,
"tag_des": tag_des
}
return loader, info
def get_class_idxs(
model_type: str,
open_set: bool,
taglist: List[str]
) -> Optional[List[int]]:
"""Get indices of required categories in the label system."""
if model_type == "ram_plus" or model_type == "ram":
if not open_set:
model_taglist_file = "ram/data/ram_tag_list.txt"
with open(model_taglist_file, "r", encoding="utf-8") as f:
model_taglist = [line.strip() for line in f]
return [model_taglist.index(tag) for tag in taglist]
else:
return None
else: # for tag2text, we directly use tagid instead of text-form of tag.
# here tagid equals to tag index.
return [int(tag) for tag in taglist]
def load_thresholds(
threshold: Optional[float],
threshold_file: Optional[str],
model_type: str,
open_set: bool,
class_idxs: List[int],
num_classes: int,
) -> List[float]:
"""Decide what threshold(s) to use."""
if not threshold_file and not threshold: # use default
if model_type == "ram_plus" or model_type == "ram":
if not open_set: # use class-wise tuned thresholds
ram_threshold_file = "ram/data/ram_tag_list_threshold.txt"
with open(ram_threshold_file, "r", encoding="utf-8") as f:
idx2thre = {
idx: float(line.strip()) for idx, line in enumerate(f)
}
return [idx2thre[idx] for idx in class_idxs]
else:
return [0.5] * num_classes
else:
return [0.68] * num_classes
elif threshold_file:
with open(threshold_file, "r", encoding="utf-8") as f:
thresholds = [float(line.strip()) for line in f]
assert len(thresholds) == num_classes
return thresholds
else:
return [threshold] * num_classes
def gen_pred_file(
imglist: List[str],
tags: List[List[str]],
img_root: str,
pred_file: str
) -> None:
"""Generate text file of tag prediction results."""
with open(pred_file, "w", encoding="utf-8") as f:
for image, tag in zip(imglist, tags):
# should be relative to img_root to match the gt file.
s = str(Path(image).relative_to(img_root))
if tag:
s = s + "," + ",".join(tag)
f.write(s + "\n")
def load_ram_plus(
backbone: str,
checkpoint: str,
input_size: int,
taglist: List[str],
tag_des: List[str],
open_set: bool,
class_idxs: List[int],
) -> Module:
model = ram_plus(pretrained=checkpoint, image_size=input_size, vit=backbone)
# trim taglist for faster inference
if open_set:
print("Building tag embeddings ...")
label_embed, _ = build_openset_llm_label_embedding(tag_des)
model.label_embed = Parameter(label_embed.float())
model.num_class = len(tag_des)
else:
model.label_embed = Parameter(model.label_embed.data.reshape(model.num_class,51,512)[class_idxs, :, :].reshape(len(class_idxs)*51, 512))
model.num_class = len(class_idxs)
return model.to(device).eval()
def load_ram(
backbone: str,
checkpoint: str,
input_size: int,
taglist: List[str],
open_set: bool,
class_idxs: List[int],
) -> Module:
model = ram(pretrained=checkpoint, image_size=input_size, vit=backbone)
# trim taglist for faster inference
if open_set:
print("Building tag embeddings ...")
label_embed, _ = build_openset_label_embedding(taglist)
model.label_embed = Parameter(label_embed.float())
else:
model.label_embed = Parameter(model.label_embed[class_idxs, :])
return model.to(device).eval()
def load_tag2text(
backbone: str,
checkpoint: str,
input_size: int
) -> Module:
model = tag2text(
pretrained=checkpoint,
image_size=input_size,
vit=backbone
)
return model.to(device).eval()
@torch.no_grad()
def forward_ram_plus(model: Module, imgs: Tensor) -> Tensor:
image_embeds = model.image_proj(model.visual_encoder(imgs.to(device)))
image_atts = torch.ones(
image_embeds.size()[:-1], dtype=torch.long).to(device)
image_cls_embeds = image_embeds[:, 0, :]
image_spatial_embeds = image_embeds[:, 1:, :]
bs = image_spatial_embeds.shape[0]
des_per_class = int(model.label_embed.shape[0] / model.num_class)
image_cls_embeds = image_cls_embeds / image_cls_embeds.norm(dim=-1, keepdim=True)
reweight_scale = model.reweight_scale.exp()
logits_per_image = (reweight_scale * image_cls_embeds @ model.label_embed.t())
logits_per_image = logits_per_image.view(bs, -1,des_per_class)
weight_normalized = F.softmax(logits_per_image, dim=2)
label_embed_reweight = torch.empty(bs, model.num_class, 512).cuda()
weight_normalized = F.softmax(logits_per_image, dim=2)
label_embed_reweight = torch.empty(bs, model.num_class, 512).cuda()
for i in range(bs):
reshaped_value = model.label_embed.view(-1, des_per_class, 512)
product = weight_normalized[i].unsqueeze(-1) * reshaped_value
label_embed_reweight[i] = product.sum(dim=1)
label_embed = relu(model.wordvec_proj(label_embed_reweight))
tagging_embed, _ = model.tagging_head(
encoder_embeds=label_embed,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=False,
mode='tagging',
)
return sigmoid(model.fc(tagging_embed).squeeze(-1))
@torch.no_grad()
def forward_ram(model: Module, imgs: Tensor) -> Tensor:
image_embeds = model.image_proj(model.visual_encoder(imgs.to(device)))
image_atts = torch.ones(
image_embeds.size()[:-1], dtype=torch.long).to(device)
label_embed = relu(model.wordvec_proj(model.label_embed)).unsqueeze(0)\
.repeat(imgs.shape[0], 1, 1)
tagging_embed, _ = model.tagging_head(
encoder_embeds=label_embed,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=False,
mode='tagging',
)
return sigmoid(model.fc(tagging_embed).squeeze(-1))
@torch.no_grad()
def forward_tag2text(
model: Module,
class_idxs: List[int],
imgs: Tensor
) -> Tensor:
image_embeds = model.visual_encoder(imgs.to(device))
image_atts = torch.ones(
image_embeds.size()[:-1], dtype=torch.long).to(device)
label_embed = model.label_embed.weight.unsqueeze(0)\
.repeat(imgs.shape[0], 1, 1)
tagging_embed, _ = model.tagging_head(
encoder_embeds=label_embed,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=False,
mode='tagging',
)
return sigmoid(model.fc(tagging_embed))[:, class_idxs]
def print_write(f: TextIO, s: str):
print(s)
f.write(s + "\n")
if __name__ == "__main__":
args = parse_args()
# set up output paths
output_dir = args.output_dir
Path(output_dir).mkdir(parents=True, exist_ok=True)
pred_file, pr_file, ap_file, summary_file, logit_file = [
output_dir + "/" + name for name in
("pred.txt", "pr.txt", "ap.txt", "summary.txt", "logits.pth")
]
with open(summary_file, "w", encoding="utf-8") as f:
print_write(f, "****************")
for key in (
"model_type", "backbone", "checkpoint", "open_set",
"dataset", "input_size",
"threshold", "threshold_file",
"output_dir", "batch_size", "num_workers"
):
print_write(f, f"{key}: {getattr(args, key)}")
print_write(f, "****************")
# prepare data
loader, info = load_dataset(
dataset=args.dataset,
model_type=args.model_type,
input_size=args.input_size,
batch_size=args.batch_size,
num_workers=args.num_workers
)
taglist, imglist, annot_file, img_root, tag_des = \
info["taglist"], info["imglist"], info["annot_file"], info["img_root"], info["tag_des"]
# get class idxs
class_idxs = get_class_idxs(
model_type=args.model_type,
open_set=args.open_set,
taglist=taglist
)
# set up threshold(s)
thresholds = load_thresholds(
threshold=args.threshold,
threshold_file=args.threshold_file,
model_type=args.model_type,
open_set=args.open_set,
class_idxs=class_idxs,
num_classes=len(taglist)
)
# inference
if Path(logit_file).is_file():
logits = torch.load(logit_file)
else:
# load model
if args.model_type == "ram_plus":
model = load_ram_plus(
backbone=args.backbone,
checkpoint=args.checkpoint,
input_size=args.input_size,
taglist=taglist,
tag_des = tag_des,
open_set=args.open_set,
class_idxs=class_idxs
)
elif args.model_type == "ram":
model = load_ram(
backbone=args.backbone,
checkpoint=args.checkpoint,
input_size=args.input_size,
taglist=taglist,
open_set=args.open_set,
class_idxs=class_idxs
)
elif args.model_type == "tag2text":
model = load_tag2text(
backbone=args.backbone,
checkpoint=args.checkpoint,
input_size=args.input_size
)
# inference
logits = torch.empty(len(imglist), len(taglist))
pos = 0
for imgs in tqdm(loader, desc="inference"):
if args.model_type == "ram_plus":
out = forward_ram_plus(model, imgs)
elif args.model_type == "ram":
out = forward_ram(model, imgs)
else:
out = forward_tag2text(model, class_idxs, imgs)
bs = imgs.shape[0]
logits[pos:pos+bs, :] = out.cpu()
pos += bs
# save logits, making threshold-tuning super fast
torch.save(logits, logit_file)
# filter with thresholds
pred_tags = []
for scores in logits.tolist():
pred_tags.append([
taglist[i] for i, s in enumerate(scores) if s >= thresholds[i]
])
# generate result file
gen_pred_file(imglist, pred_tags, img_root, pred_file)
# evaluate and record
mAP, APs = get_mAP(logits.numpy(), annot_file, taglist)
CP, CR, Ps, Rs = get_PR(pred_file, annot_file, taglist)
with open(ap_file, "w", encoding="utf-8") as f:
f.write("Tag,AP\n")
for tag, AP in zip(taglist, APs):
f.write(f"{tag},{AP*100.0:.2f}\n")
with open(pr_file, "w", encoding="utf-8") as f:
f.write("Tag,Precision,Recall\n")
for tag, P, R in zip(taglist, Ps, Rs):
f.write(f"{tag},{P*100.0:.2f},{R*100.0:.2f}\n")
with open(summary_file, "w", encoding="utf-8") as f:
print_write(f, f"mAP: {mAP*100.0}")
print_write(f, f"CP: {CP*100.0}")
print_write(f, f"CR: {CR*100.0}")