You are given an n x n
binary matrix grid
where 1
represents land and 0
represents water.
An island is a 4-directionally connected group of 1
's not connected to any other 1
's. There are exactly two islands in grid
.
You may change 0
's to 1
's to connect the two islands to form one island.
Return the smallest number of 0
's you must flip to connect the two islands.
Example 1:
Input: grid = [[0,1],[1,0]] Output: 1
Example 2:
Input: grid = [[0,1,0],[0,0,0],[0,0,1]] Output: 2
Example 3:
Input: grid = [[1,1,1,1,1],[1,0,0,0,1],[1,0,1,0,1],[1,0,0,0,1],[1,1,1,1,1]] Output: 1
Constraints:
n == grid.length == grid[i].length
2 <= n <= 100
grid[i][j]
is either0
or1
.- There are exactly two islands in
grid
.
DFS & BFS.
class Solution:
def shortestBridge(self, grid: List[List[int]]) -> int:
def find():
for i in range(m):
for j in range(n):
if grid[i][j] == 1:
return i, j
def dfs(i, j):
q.append((i, j))
grid[i][j] = 2
for a, b in dirs:
x, y = i + a, j + b
if 0 <= x < m and 0 <= y < n and grid[x][y] == 1:
dfs(x, y)
m, n = len(grid), len(grid[0])
q = deque()
dirs = [[0, 1], [0, -1], [1, 0], [-1, 0]]
i, j = find()
dfs(i, j)
ans = -1
while q:
ans += 1
for _ in range(len(q), 0, -1):
i, j = q.popleft()
for a, b in dirs:
x, y = i + a, j + b
if 0 <= x < m and 0 <= y < n:
if grid[x][y] == 1:
return ans
if grid[x][y] == 0:
grid[x][y] = 2
q.append((x, y))
return 0
class Solution {
private int[][] grid;
private int[] dirs = {-1, 0, 1, 0, -1};
private int m;
private int n;
public int shortestBridge(int[][] grid) {
m = grid.length;
n = grid[0].length;
this.grid = grid;
int[] start = find();
Queue<int[]> q = new LinkedList<>();
dfs(start[0], start[1], q);
int ans = -1;
while (!q.isEmpty()) {
++ans;
for (int k = q.size(); k > 0; --k) {
int[] p = q.poll();
for (int i = 0; i < 4; ++i) {
int x = p[0] + dirs[i];
int y = p[1] + dirs[i + 1];
if (x >= 0 && x < m && y >= 0 && y < n) {
if (grid[x][y] == 1) {
return ans;
}
if (grid[x][y] == 0) {
grid[x][y] = 2;
q.offer(new int[]{x, y});
}
}
}
}
}
return 0;
}
private void dfs(int i, int j, Queue<int[]> q) {
grid[i][j] = 2;
q.offer(new int[]{i, j});
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k];
int y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1) {
dfs(x, y, q);
}
}
}
private int[] find() {
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == 1) {
return new int[]{i, j};
}
}
}
return new int[]{0, 0};
}
}
class Solution {
public:
vector<int> dirs = {-1, 0, 1, 0, -1};
int shortestBridge(vector<vector<int>>& grid) {
vector<int> start = find(grid);
queue<vector<int>> q;
dfs(start[0], start[1], q, grid);
int ans = -1;
while (!q.empty())
{
++ans;
for (int k = q.size(); k > 0; --k)
{
auto p = q.front();
q.pop();
for (int i = 0; i < 4; ++i)
{
int x = p[0] + dirs[i];
int y = p[1] + dirs[i + 1];
if (x >= 0 && x < grid.size() && y >= 0 && y < grid[0].size())
{
if (grid[x][y] == 1) return ans;
if (grid[x][y] == 0)
{
grid[x][y] = 2;
q.push({x, y});
}
}
}
}
}
return 0;
}
void dfs(int i, int j, queue<vector<int>>& q, vector<vector<int>>& grid) {
grid[i][j] = 2;
q.push({i, j});
for (int k = 0; k < 4; ++k)
{
int x = i + dirs[k];
int y = j + dirs[k + 1];
if (x >= 0 && x < grid.size() && y >= 0 && y < grid[0].size() && grid[x][y] == 1)
dfs(x, y, q, grid);
}
}
vector<int> find(vector<vector<int>>& grid) {
for (int i = 0; i < grid.size(); ++i)
for (int j = 0; j < grid[0].size(); ++j)
if (grid[i][j] == 1)
return {i, j};
return {0, 0};
}
};
func shortestBridge(grid [][]int) int {
m, n := len(grid), len(grid[0])
find := func() []int {
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if grid[i][j] == 1 {
return []int{i, j}
}
}
}
return []int{0, 0}
}
start := find()
var q [][]int
dirs := []int{-1, 0, 1, 0, -1}
var dfs func(i, j int)
dfs = func(i, j int) {
grid[i][j] = 2
q = append(q, []int{i, j})
for k := 0; k < 4; k++ {
x, y := i+dirs[k], j+dirs[k+1]
if x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1 {
dfs(x, y)
}
}
}
dfs(start[0], start[1])
ans := -1
for len(q) > 0 {
ans++
for k := len(q); k > 0; k-- {
p := q[0]
q = q[1:]
for i := 0; i < 4; i++ {
x, y := p[0]+dirs[i], p[1]+dirs[i+1]
if x >= 0 && x < m && y >= 0 && y < n {
if grid[x][y] == 1 {
return ans
}
if grid[x][y] == 0 {
grid[x][y] = 2
q = append(q, []int{x, y})
}
}
}
}
}
return 0
}