Skip to content

Latest commit

 

History

History
229 lines (204 loc) · 6.31 KB

File metadata and controls

229 lines (204 loc) · 6.31 KB

中文文档

Description

Given an n x n grid containing only values 0 and 1, where 0 represents water and 1 represents land, find a water cell such that its distance to the nearest land cell is maximized, and return the distance. If no land or water exists in the grid, return -1.

The distance used in this problem is the Manhattan distance: the distance between two cells (x0, y0) and (x1, y1) is |x0 - x1| + |y0 - y1|.

 

Example 1:

Input: grid = [[1,0,1],[0,0,0],[1,0,1]]
Output: 2
Explanation: The cell (1, 1) is as far as possible from all the land with distance 2.

Example 2:

Input: grid = [[1,0,0],[0,0,0],[0,0,0]]
Output: 4
Explanation: The cell (2, 2) is as far as possible from all the land with distance 4.

 

Constraints:

  • n == grid.length
  • n == grid[i].length
  • 1 <= n <= 100
  • grid[i][j] is 0 or 1

Solutions

BFS.

Python3

class Solution:
    def maxDistance(self, grid: List[List[int]]) -> int:
        n = len(grid)
        q = deque([(i, j) for i in range(n)
                   for j in range(n) if grid[i][j] == 1])
        ans = -1
        valid = False
        while q:
            ans += 1
            for _ in range(len(q), 0, -1):
                i, j = q.popleft()
                for a, b in [[0, 1], [0, -1], [1, 0], [-1, 0]]:
                    x, y = i + a, b + j
                    if 0 <= x < n and 0 <= y < n and grid[x][y] == 0:
                        valid = True
                        grid[x][y] = 1
                        q.append((x, y))
        return ans if valid else -1

Java

class Solution {
    public int maxDistance(int[][] grid) {
        int n = grid.length;
        Deque<int[]> q = new LinkedList<>();
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < n; ++j) {
                if (grid[i][j] == 1) {
                    q.offer(new int[]{i, j});
                }
            }
        }
        int ans = -1;
        boolean valid = false;
        int[] dirs = {-1, 0, 1, 0, -1};
        while (!q.isEmpty()) {
            ++ans;
            for (int k = q.size(); k > 0; --k) {
                int[] p = q.poll();
                for (int i = 0; i < 4; ++i) {
                    int x = p[0] + dirs[i];
                    int y = p[1] + dirs[i + 1];
                    if (x >= 0 && x < n && y >= 0 && y < n && grid[x][y] == 0) {
                        valid = true;
                        grid[x][y] = 1;
                        q.offer(new int[]{x, y});
                    }
                }
            }
        }
        return valid ? ans : -1;
    }
}

TypeScript

function maxDistance(grid: number[][]): number {
    const m = grid.length,
        n = grid[0].length;
    let queue: Array<Array<number>> = [];
    for (let i = 0; i < m; i++) {
        for (let j = 0; j < n; j++) {
            if (grid[i][j]) {
                queue.push([i, j]);
            }
        }
    }
    if ([0, m * n].includes(queue.length)) return -1;
    const directions = [
        [0, 1],
        [0, -1],
        [1, 0],
        [-1, 0],
    ];
    let depth = 1;
    while (queue.length) {
        depth += 1;
        let nextLevel: Array<Array<number>> = [];
        for (let [x, y] of queue) {
            for (let [dx, dy] of directions) {
                const [i, j] = [x + dx, y + dy];
                if (i >= 0 && i < m && j >= 0 && j < n && !grid[i][j]) {
                    grid[i][j] = depth;
                    nextLevel.push([i, j]);
                }
            }
        }
        queue = nextLevel;
    }
    return depth - 2;
}

C++

class Solution {
public:
    int maxDistance(vector<vector<int>>& grid) {
        int n = grid.size();
        typedef pair<int, int> pii;
        queue<pii> q;
        for (int i = 0; i < n; ++i)
            for (int j = 0; j < n; ++j)
                if (grid[i][j] == 1)
                    q.push({i, j});
        int ans = -1;
        bool valid = false;
        vector<int> dirs = {-1, 0, 1, 0, -1};
        while (!q.empty())
        {
            ++ans;
            for (int k = q.size(); k > 0; --k)
            {
                pii p = q.front();
                q.pop();
                for (int i = 0; i < 4; ++i)
                {
                    int x = p.first + dirs[i];
                    int y = p.second + dirs[i + 1];
                    if (x >= 0 && x < n && y >= 0 && y < n && grid[x][y] == 0)
                    {
                        valid = true;
                        grid[x][y] = 1;
                        q.push({x, y});
                    }
                }
            }
        }
        return valid ? ans : -1;
    }
};

Go

func maxDistance(grid [][]int) int {
	n := len(grid)
	var q [][]int
	for i := 0; i < n; i++ {
		for j := 0; j < n; j++ {
			if grid[i][j] == 1 {
				q = append(q, []int{i, j})
			}
		}
	}
	ans := -1
	valid := false
	dirs := []int{-1, 0, 1, 0, -1}
	for len(q) > 0 {
		ans++
		for k := len(q); k > 0; k-- {
			p := q[0]
			q = q[1:]
			for i := 0; i < 4; i++ {
				x, y := p[0]+dirs[i], p[1]+dirs[i+1]
				if x >= 0 && x < n && y >= 0 && y < n && grid[x][y] == 0 {
					valid = true
					grid[x][y] = 1
					q = append(q, []int{x, y})
				}
			}
		}
	}
	if valid {
		return ans
	}
	return -1
}

...