Skip to content

Latest commit

 

History

History
217 lines (178 loc) · 4.01 KB

File metadata and controls

217 lines (178 loc) · 4.01 KB

中文文档

Description

Given an integer num, return the number of steps to reduce it to zero.

In one step, if the current number is even, you have to divide it by 2, otherwise, you have to subtract 1 from it.

 

Example 1:

Input: num = 14
Output: 6
Explanation: 
Step 1) 14 is even; divide by 2 and obtain 7. 
Step 2) 7 is odd; subtract 1 and obtain 6.
Step 3) 6 is even; divide by 2 and obtain 3. 
Step 4) 3 is odd; subtract 1 and obtain 2. 
Step 5) 2 is even; divide by 2 and obtain 1. 
Step 6) 1 is odd; subtract 1 and obtain 0.

Example 2:

Input: num = 8
Output: 4
Explanation: 
Step 1) 8 is even; divide by 2 and obtain 4. 
Step 2) 4 is even; divide by 2 and obtain 2. 
Step 3) 2 is even; divide by 2 and obtain 1. 
Step 4) 1 is odd; subtract 1 and obtain 0.

Example 3:

Input: num = 123
Output: 12

 

Constraints:

  • 0 <= num <= 106

Solutions

Python3

class Solution:
    def numberOfSteps(self, num: int) -> int:
        ans = 0
        while num:
            if num & 1:
                num -= 1
            else:
                num >>= 1
            ans += 1
        return ans
class Solution:
    def numberOfSteps(self, num: int) -> int:
        if num == 0:
            return 0
        return 1 + (self.numberOfSteps(num // 2) if num % 2 == 0 else self.numberOfSteps(num - 1))

Java

class Solution {

    public int numberOfSteps(int num) {
        int ans = 0;
        while (num != 0) {
            num = (num & 1) == 1 ? num - 1 : num >> 1;
            ++ans;
        }
        return ans;
    }
}
class Solution {

    public int numberOfSteps(int num) {
        if (num == 0) {
            return 0;
        }
        return 1 + numberOfSteps((num & 1) == 0 ? num >> 1 : num - 1);
    }
}

TypeScript

function numberOfSteps(num: number): number {
    let ans = 0;
    while (num) {
        num = num & 1 ? num - 1 : num >>> 1;
        ans++;
    }
    return ans;
}

C++

class Solution {
public:
    int numberOfSteps(int num) {
        int ans = 0;
        while (num)
        {
            num = num & 1 ? num - 1 : num >> 1;
            ++ans;
        }
        return ans;
    }
};
class Solution {
public:
    int numberOfSteps(int num) {
        if (num == 0) return 0;
        return 1 + (num & 1 ? numberOfSteps(num - 1) : numberOfSteps(num >> 1));
    }
};

Go

func numberOfSteps(num int) int {
	ans := 0
	for num != 0 {
		if (num & 1) == 1 {
			num--
		} else {
			num >>= 1
		}
		ans++
	}
	return ans
}
func numberOfSteps(num int) int {
	if num == 0 {
		return 0
	}
	if (num & 1) == 0 {
		return 1 + numberOfSteps(num>>1)
	}
	return 1 + numberOfSteps(num-1)
}

Rust

impl Solution {
    pub fn number_of_steps(mut num: i32) -> i32 {
        let mut count = 0;
        while num != 0 {
            if num % 2 == 0 {
                num >>= 1;
            } else {
                num -= 1;
            }
            count += 1;
        }
        count
    }
}
impl Solution {
    pub fn number_of_steps(mut num: i32) -> i32 {
        if num == 0 {
            0
        } else if num % 2 == 0 {
            1 + Solution::number_of_steps(num >> 1)
        } else {
            1 + Solution::number_of_steps(num - 1)
        }
    }
}

...