Skip to content

Latest commit

 

History

History
394 lines (328 loc) · 10.5 KB

File metadata and controls

394 lines (328 loc) · 10.5 KB

中文文档

Description

You are a hiker preparing for an upcoming hike. You are given heights, a 2D array of size rows x columns, where heights[row][col] represents the height of cell (row, col). You are situated in the top-left cell, (0, 0), and you hope to travel to the bottom-right cell, (rows-1, columns-1) (i.e., 0-indexed). You can move up, down, left, or right, and you wish to find a route that requires the minimum effort.

A route's effort is the maximum absolute difference in heights between two consecutive cells of the route.

Return the minimum effort required to travel from the top-left cell to the bottom-right cell.

 

Example 1:

Input: heights = [[1,2,2],[3,8,2],[5,3,5]]

Output: 2

Explanation: The route of [1,3,5,3,5] has a maximum absolute difference of 2 in consecutive cells.

This is better than the route of [1,2,2,2,5], where the maximum absolute difference is 3.

Example 2:

Input: heights = [[1,2,3],[3,8,4],[5,3,5]]

Output: 1

Explanation: The route of [1,2,3,4,5] has a maximum absolute difference of 1 in consecutive cells, which is better than route [1,3,5,3,5].

Example 3:

Input: heights = [[1,2,1,1,1],[1,2,1,2,1],[1,2,1,2,1],[1,2,1,2,1],[1,1,1,2,1]]

Output: 0

Explanation: This route does not require any effort.

 

Constraints:

  • rows == heights.length
  • columns == heights[i].length
  • 1 <= rows, columns <= 100
  • 1 <= heights[i][j] <= 106

Solutions

Union find or Binary search + BFS.

Python3

Union find:

class Solution:
    def minimumEffortPath(self, heights: List[List[int]]) -> int:
        def find(x):
            if p[x] != x:
                p[x] = find(p[x])
            return p[x]

        m, n = len(heights), len(heights[0])
        p = list(range(m * n))
        e = []
        for i in range(m):
            for j in range(n):
                if i < m - 1:
                    e.append((abs(heights[i][j] - heights[i + 1][j]), i * n + j, (i + 1) * n + j))
                if j < n - 1:
                    e.append((abs(heights[i][j] - heights[i][j + 1]), i * n + j, i * n + j + 1))
        e.sort()
        for h, i, j in e:
            p[find(i)] = find(j)
            if find(0) == find(m * n - 1):
                return h
        return 0

Binary search + BFS:

class Solution:
    def minimumEffortPath(self, heights: List[List[int]]) -> int:
        m, n = len(heights), len(heights[0])
        left, right = 0, 999999
        while left < right:
            mid = (left + right) >> 1
            q = deque([(0, 0)])
            vis = set([(0, 0)])
            while q:
                i, j = q.popleft()
                for a, b in [[0, 1], [0, -1], [1, 0], [-1, 0]]:
                    x, y = i + a, j + b
                    if 0 <= x < m and 0 <= y < n and (x, y) not in vis and abs(heights[i][j] - heights[x][y]) <= mid:
                        q.append((x, y))
                        vis.add((x, y))
            if (m - 1, n - 1) in vis:
                right = mid
            else:
                left = mid + 1
        return left

Java

Union find:

class Solution {
    private int[] p;

    public int minimumEffortPath(int[][] heights) {
        int m = heights.length;
        int n = heights[0].length;
        p = new int[m * n];
        for (int i = 0; i < p.length; ++i) {
            p[i] = i;
        }
        List<int[]> edges = new ArrayList<>();
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (i < m - 1) {
                    edges.add(new int[]{Math.abs(heights[i][j] - heights[i + 1][j]), i * n + j, (i + 1) * n + j});
                }
                if (j < n - 1) {
                    edges.add(new int[]{Math.abs(heights[i][j] - heights[i][j + 1]), i * n + j, i * n + j + 1});
                }
            }
        }
        Collections.sort(edges, Comparator.comparingInt(a -> a[0]));
        for (int[] e : edges) {
            int i = e[1], j = e[2];
            p[find(i)] = find(j);
            if (find(0) == find(m * n - 1)) {
                return e[0];
            }
        }
        return 0;
    }

    private int find(int x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        return p[x];
    }
}

Binary search + BFS:

class Solution {
    public int minimumEffortPath(int[][] heights) {
        int m = heights.length;
        int n = heights[0].length;
        int left = 0;
        int right = 999999;
        int[] dirs = {-1, 0, 1, 0, -1};
        while (left < right) {
            int mid = (left + right) >> 1;
            boolean[][] vis = new boolean[m][n];
            vis[0][0] = true;
            Deque<int[]> q = new ArrayDeque<>();
            q.offer(new int[]{0, 0});
            while (!q.isEmpty()) {
                int[] p = q.poll();
                int i = p[0], j = p[1];
                for (int k = 0; k < 4; ++k) {
                    int x = i + dirs[k], y = j + dirs[k + 1];
                    if (x >= 0 && x < m && y >= 0 && y < n && !vis[x][y] && Math.abs(heights[i][j] - heights[x][y]) <= mid) {
                        q.offer(new int[]{x, y});
                        vis[x][y] = true;
                    }
                }
            }
            if (vis[m - 1][n - 1]) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return left;
    }
}

C++

Union find:

class Solution {
public:
    vector<int> p;

    int minimumEffortPath(vector<vector<int>>& heights) {
        int m = heights.size(), n = heights[0].size();
        p.resize(m * n);
        for (int i = 0; i < p.size(); ++i) p[i] = i;
        vector<vector<int>> edges;
        for (int i = 0; i < m; ++i)
        {
            for (int j = 0; j < n; ++j)
            {
                if (i < m - 1) edges.push_back({abs(heights[i][j] - heights[i + 1][j]), i * n + j, (i + 1) * n + j});
                if (j < n - 1) edges.push_back({abs(heights[i][j] - heights[i][j + 1]), i * n + j, i * n + j + 1});
            }
        }
        sort(edges.begin(), edges.end());
        for (auto& e : edges)
        {
            int i = e[1], j = e[2];
            p[find(i)] = find(j);
            if (find(0) == find(m * n - 1)) return e[0];
        }
        return 0;
    }

    int find(int x) {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }
};

Binary search + BFS:

class Solution {
public:
    int minimumEffortPath(vector<vector<int>>& heights) {
        int m = heights.size(), n = heights[0].size();
        int left = 0, right = 999999;
        vector<int> dirs = {-1, 0, 1, 0, -1};
        while (left < right)
        {
            int mid = (left + right) >> 1;
            vector<vector<bool>> vis(m, vector<bool>(n));
            vis[0][0] = true;
            queue<pair<int, int>> q;
            q.push({0, 0});
            while (!q.empty())
            {
                auto [i, j] = q.front();
                q.pop();
                for (int k = 0; k < 4; ++k)
                {
                    int x = i + dirs[k], y = j + dirs[k + 1];
                    if (x >= 0 && x < m && y >= 0 && y < n && !vis[x][y] && abs(heights[i][j] - heights[x][y]) <= mid)
                    {
                        q.push({x, y});
                        vis[x][y] = true;
                    }
                }
            }
            if (vis[m - 1][n - 1]) right = mid;
            else left = mid + 1;
        }
        return left;
    }
};

Go

Union find:

func minimumEffortPath(heights [][]int) int {
	m, n := len(heights), len(heights[0])
	p := make([]int, m*n)
	for i := range p {
		p[i] = i
	}
	var find func(x int) int
	find = func(x int) int {
		if p[x] != x {
			p[x] = find(p[x])
		}
		return p[x]
	}
	edges := [][]int{}
	for i, row := range heights {
		for j, h := range row {
			if i < m-1 {
				s := []int{abs(h - heights[i+1][j]), i*n + j, (i+1)*n + j}
				edges = append(edges, s)
			}
			if j < n-1 {
				s := []int{abs(h - row[j+1]), i*n + j, i*n + j + 1}
				edges = append(edges, s)
			}
		}
	}
	sort.Slice(edges, func(i, j int) bool {
		return edges[i][0] < edges[j][0]
	})
	for _, e := range edges {
		i, j := e[1], e[2]
		p[find(i)] = find(j)
		if find(0) == find(m*n-1) {
			return e[0]
		}
	}
	return 0
}

func abs(x int) int {
	if x > 0 {
		return x
	}
	return -x
}

Binary search + BFS:

func minimumEffortPath(heights [][]int) int {
	m, n := len(heights), len(heights[0])
	left, right := 0, 999999
	dirs := []int{-1, 0, 1, 0, -1}
	for left < right {
		mid := (left + right) >> 1
		vis := make([][]bool, m)
		for i := range vis {
			vis[i] = make([]bool, n)
		}
		vis[0][0] = true
		q := [][]int{{0, 0}}
		for len(q) > 0 {
			p := q[0]
			q = q[1:]
			i, j := p[0], p[1]
			for k := 0; k < 4; k++ {
				x, y := i+dirs[k], j+dirs[k+1]
				if x >= 0 && x < m && y >= 0 && y < n && !vis[x][y] && abs(heights[i][j]-heights[x][y]) <= mid {
					q = append(q, []int{x, y})
					vis[x][y] = true
				}
			}
		}
		if vis[m-1][n-1] {
			right = mid
		} else {
			left = mid + 1
		}
	}
	return left
}

func abs(x int) int {
	if x > 0 {
		return x
	}
	return -x
}

...