-
Notifications
You must be signed in to change notification settings - Fork 10
/
model.py
executable file
·165 lines (134 loc) · 5.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
import numpy as np
import torch.nn as nn
from functions import PLU
class StateEncoder(nn.Module):
def __init__(self, in_dim = 128, hidden_dim = 512, out_dim = 256):
super(StateEncoder, self).__init__()
self.in_dim = in_dim
self.hidden_dim = hidden_dim
self.out_dim = out_dim
self.fc0 = nn.Linear(in_dim, hidden_dim, bias=True)
self.fc1 = nn.Linear(hidden_dim, out_dim, bias=True)
def forward(self, x):
x = self.fc0(x)
x = PLU(x)
x = self.fc1(x)
x = PLU(x)
return x
class OffsetEncoder(nn.Module):
def __init__(self, in_dim = 128, hidden_dim = 512, out_dim = 256):
super(OffsetEncoder, self).__init__()
self.in_dim = in_dim
self.hidden_dim = hidden_dim
self.out_dim = out_dim
self.fc0 = nn.Linear(in_dim, hidden_dim, bias=True)
self.fc1 = nn.Linear(hidden_dim, out_dim, bias=True)
def forward(self, x):
x = self.fc0(x)
x = PLU(x)
x = self.fc1(x)
x = PLU(x)
return x
class TargetEncoder(nn.Module):
def __init__(self, in_dim = 128, hidden_dim = 512, out_dim = 256):
super(TargetEncoder, self).__init__()
self.in_dim = in_dim
self.hidden_dim = hidden_dim
self.out_dim = out_dim
self.fc0 = nn.Linear(in_dim, hidden_dim, bias=True)
self.fc1 = nn.Linear(hidden_dim, out_dim, bias=True)
def forward(self, x):
x = self.fc0(x)
x = PLU(x)
x = self.fc1(x)
x = PLU(x)
return x
class LSTM(nn.Module):
def __init__(self, in_dim = 128, hidden_dim = 768, num_layer = 1):
super(LSTM, self).__init__()
self.in_dim = in_dim
self.hidden_dim = hidden_dim
self.num_layer = num_layer
self.rnn = nn.LSTM(self.in_dim, self.hidden_dim, self.num_layer)
def init_hidden(self, batch_size):
self.h = torch.zeros((self.num_layer, batch_size, self.hidden_dim)).cuda()
self.c = torch.zeros((self.num_layer, batch_size, self.hidden_dim)).cuda()
def forward(self, x):
x, (self.h, self.c) = self.rnn(x, (self.h, self.c))
return x
class Decoder(nn.Module):
def __init__(self, in_dim = 128, hidden_dim = 512, out_dim = 256):
super(Decoder, self).__init__()
self.in_dim = in_dim
self.hidden_dim = hidden_dim
self.out_dim = out_dim
self.fc0 = nn.Linear(in_dim, hidden_dim, bias=True)
self.fc1 = nn.Linear(hidden_dim, hidden_dim // 2, bias=True)
self.fc2 = nn.Linear(hidden_dim // 2, out_dim - 4, bias=True)
self.fc_conct = nn.Linear(hidden_dim // 2, 4, bias=True)
self.ac_sig = nn.Sigmoid()
def forward(self, x):
x = self.fc0(x)
x = PLU(x)
x = self.fc1(x)
x = PLU(x)
o1 = self.fc2(x)
o2 = self.ac_sig(self.fc_conct(x))
return o1, o2
class ShortMotionDiscriminator(nn.Module):
def __init__(self, length = 3, in_dim = 128, hidden_dim = 512, out_dim = 1):
super(ShortMotionDiscriminator, self).__init__()
self.in_dim = in_dim
self.hidden_dim = hidden_dim
self.out_dim = out_dim
self.length = length
self.fc0 = nn.Conv1d(in_dim, hidden_dim, kernel_size = self.length, bias=True)
self.fc1 = nn.Conv1d(hidden_dim, hidden_dim // 2, kernel_size = 1, bias=True)
self.fc2 = nn.Conv1d(hidden_dim // 2, out_dim, kernel_size = 1, bias=True)
def forward(self, x):
x = self.fc0(x)
x = PLU(x)
x = self.fc1(x)
x = PLU(x)
x = self.fc2(x)
return x
class LongMotionDiscriminator(nn.Module):
def __init__(self, length = 10, in_dim = 128, hidden_dim = 512, out_dim = 1):
super(LongMotionDiscriminator, self).__init__()
self.in_dim = in_dim
self.hidden_dim = hidden_dim
self.out_dim = out_dim
self.length = length
self.fc0 = nn.Conv1d(in_dim, hidden_dim, kernel_size = self.length, bias=True)
self.fc1 = nn.Conv1d(hidden_dim, hidden_dim // 2, kernel_size = 1, bias=True)
self.fc2 = nn.Conv1d(hidden_dim // 2, out_dim, kernel_size = 1, bias=True)
def forward(self, x):
x = self.fc0(x)
x = PLU(x)
x = self.fc1(x)
x = PLU(x)
x = self.fc2(x)
return x
if __name__=="__main__":
state_encoder = StateEncoder()
x = torch.zeros((32, 128))
print(state_encoder(x).size())
offset_encoder = OffsetEncoder()
x = torch.zeros((32, 128))
print(offset_encoder(x).size())
target_encoder = TargetEncoder()
x = torch.zeros((32, 128))
print(target_encoder(x).size())
lstm = LSTM(32)
x = torch.zeros((10, 32, 128))
print(lstm(x).size())
decoder = Decoder()
x = torch.zeros((32, 128))
print(decoder(x)[0].size())
short_dis = ShortMotionDiscriminator()
x = torch.zeros((32, 128, 50))
print(short_dis(x).size())
long_dis = LongMotionDiscriminator()
x = torch.zeros((32, 128, 50))
print(long_dis(x).size())