-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
263 lines (212 loc) · 10.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from __future__ import print_function, division
import sys
# sys.path.append('models')
import argparse
import os
import cv2
import time
import numpy as np
import matplotlib.pyplot as plt
import json
from easydict import EasyDict
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
from models.network import HCNet
import evaluate
import dataset as datasets
from models.utils.utils import *
from models.utils.loss_factory import *
from myevaluate import evaluate_HCNet
# from torch.utils.tensorboard import SummaryWriter
import warnings
warnings.filterwarnings("ignore")
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
try:
from torch.cuda.amp import GradScaler
except:
# dummy GradScaler for PyTorch < 1.6
class GradScaler:
def __init__(self):
pass
def scale(self, loss):
return loss
def unscale_(self, optimizer):
pass
def step(self, optimizer):
optimizer.step()
def update(self):
pass
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def fetch_optimizer(args, model):
""" Create the optimizer and learning rate scheduler """
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=args.epsilon)
if args.scheduler == 'Cosine':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(85))
elif args.scheduler == 'Reduce':
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.8, min_lr = 0.000005, patience=0, eps=args.epsilon)
elif args.scheduler == 'OneCycle':
scheduler = optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps+100,
pct_start=0.05, cycle_momentum=False, anneal_strategy='linear')
elif args.scheduler == 'MultiCycle':
scheduler = optim.lr_scheduler.CyclicLR(optimizer, base_lr=0.000005, max_lr=args.lr, # 9000 171000
step_size_up=9000, step_size_down=171000, mode='triangular2',cycle_momentum = False) #mode in ['triangular', 'triangular2', 'exp_range']
return optimizer, scheduler
def train(args):
model = nn.DataParallel(HCNet(args), device_ids=args.gpuid)
print("Parameter Count: %d" % count_parameters(model))
train_dataset, val_dataset = datasets.fetch_dataloader(args)
nw = min([os.cpu_count(), args.batch_size if args.batch_size > 1 else 0, 12]) # number of workers
print('Using {} dataloader workers every process'.format(nw)) # https://blog.csdn.net/ResumeProject/article/details/125449639
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True,pin_memory=True, num_workers=nw)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False,pin_memory=True, num_workers=nw)
optimizer, scheduler = fetch_optimizer(args, model)
best_dis = args.best_dis
if args.restore_ckpt is not None:
PATH = args.restore_ckpt # 'checkpoints/best_checkpoint.pth'
if os.path.isfile(PATH):
checkpoint = torch.load(PATH)
best_dis = checkpoint['best_dis']
args.start_step = checkpoint['steps']
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['lr_schedule'])
print("Have load state_dict from: {}".format(args.restore_ckpt))
print('Load checkpoint at steps {}.'.format(checkpoint['steps']))
elif args.model is not None:
model.load_state_dict(torch.load(args.model), strict=True)
print("Have load state_dict from: {}".format(args.model))
print('Best distance so far {}.'.format(best_dis))
try:
scheduler._scale_fn_custom = scheduler._scale_fn_ref()
scheduler._scale_fn_ref = None
except Exception as e:
print(f"An error occurred: {str(e)}")
model.cuda()
model.train()
total_steps = args.start_step
scaler = GradScaler(enabled=args.mixed_precision)
logger = Logger_train(args, scheduler, optimizer, len(train_loader))
logger.total_steps = total_steps
epoch = args.start_step//len(train_loader)
num_epochs = args.num_steps//len(train_loader)
infoLoss = InfoNCELoss(temperature=args.temperature, sample = True)
should_keep_training = True
w1, w2, w3 = args.loss_w
while should_keep_training:
model.train()
for i_batch, data_blob in enumerate(train_loader):
optimizer.zero_grad()
image1, image2, grd_gps, sat_gps, transformed_center, sat_delta, ori_angle = [x.cuda() for x in data_blob] # img1, img2, pona_gps, sat_gps
sat_delta = sat_delta if args.orig_label else None
# Forward pass
four_pred, corr_fn = model(image1, image2, sat_gps=sat_gps.float(), iters_lev0=args.iters_lev0)
loss, metrics = vigor_gps_loss(four_pred, grd_gps = grd_gps, sat_gps=sat_gps, args=args, sat_delta = sat_delta, ori_angle = ori_angle, w3 = w3,\
orien = args.dataset == 'vigor' and args.orien, transformed_center = transformed_center, sz = [image1.shape[2],image1.shape[3]] ,gamma=args.gamma)
loss2 = corr_loss(grd_gps, sat_gps, corr_fn, infoLoss, args=args, sat_delta = sat_delta, transformed_center = transformed_center, sz = [image1.shape[2],image1.shape[3]])
loss = loss*w1 + loss2*w2
# Backward and Optimze
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
scaler.step(optimizer) # https://blog.csdn.net/weixin_51723388/article/details/126260788
### Learning Rate update
scale = scaler.get_scale()
scaler.update()
skip_lr_sched = (scale > scaler.get_scale())
if not skip_lr_sched:
if args.scheduler == 'OneCycle' or args.scheduler == 'MultiCycle' :
scheduler.step()
# scheduler.step(loss)
else:
print("skip the scheduler step")
metrics.update({'loss': loss.cpu().item()})
logger.push(metrics)
if total_steps % args.IMG_FREQ == args.IMG_FREQ-1:
H = get_homograpy(four_pred[-1], image1.shape)
H = H.detach().cpu().numpy()
image1 = image1[0].permute(1, 2,0).detach().cpu().numpy()
image0 = image2[0].permute(1, 2,0).detach().cpu().numpy()
plt.figure(figsize=(10,10))
result = show_overlap(image1, image0, H[0])
cv2.imwrite('./watch/' + "result_" + args.name + '.png',result[:,:,::-1])
print("save at: {}".format('./watch/' + "result_" + args.name + '.png'))
total_steps += 1
if total_steps > args.num_steps:
should_keep_training = False
break
if epoch % 2 == 1 and not epoch >= num_epochs:
if args.scheduler == 'Cosine':
scheduler.step()
epoch+=1
continue
results = evaluate.validate_process(model.module, total_steps, val_loader, args)
logger.write_dict(results)
val_mdis = results['val_mace']
if args.scheduler == 'Reduce':
scheduler.step(val_mdis)
elif args.scheduler == 'Cosine':
scheduler.step()
print('\033[1;94m'+'Epoch: [{}/{}], Loss: {}. \033[0m'
.format(epoch+1, num_epochs, val_mdis.item()))
if val_mdis < best_dis:
best_dis = val_mdis
checkpoint = {
'best_dis': best_dis,
'steps': total_steps,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_schedule':scheduler.state_dict()
}
best_model_dict = model.state_dict()
PATH = 'checkpoints/best_checkpoint_{}.pth'.format(args.name)
torch.save(checkpoint, PATH)
print('\033[1;94m'+"Save the best of {}, at {}\033[0m".format(val_mdis, PATH))
else:
print('\033[1;91m'+"Val has no improvement vs {}!\033[0m".format(best_dis)) # https://blog.csdn.net/qq_63167347/article/details/125824913
with open(logger.file_name, 'a') as file:
file.write('Epoch: [{}/{}], mdis: {}, the best: {}, at {}.'
.format(epoch+1, num_epochs, val_mdis.item(), best_dis, checkpoint['steps']) + '\n')
epoch+=1
logger.close()
print("The minist distance is {}m!".format(best_dis))
model.load_state_dict(best_model_dict)
PATH = 'checkpoints/%.3f_' % best_dis+'%s.pth' % args.name
torch.save(model.state_dict(), PATH)
model = model.module
model.eval()
val_dataset = datasets.fetch_dataloader(args, split="validation")
evaluate_HCNet(model, val_dataset, args=args)
return PATH
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, help="path of config file")
parser.add_argument('--dropout', type=float, default=0.0)
parser.add_argument('--start_step', type=int, default=0)
parser.add_argument('--batch_size', type=int)
parser.add_argument('--name', default='HC-Net', help="name your experiment")
parser.add_argument('--restore_ckpt', help="restore checkpoint")
parser.add_argument('--validation', type=str, nargs='+')
parser.add_argument('--best_dis', type=float, default=1e8)
args = parser.parse_args()
config = json.load(open(args.config,'r'))
config = EasyDict(config)
config['config'] = args.config
config['best_dis'] = args.best_dis
config['validation'] = args.validation
config['name'] = args.name
config['restore_ckpt'] = args.restore_ckpt
config['start_step'] = args.start_step
if args.batch_size:
config['batch_size'] = args.batch_size
print(config)
setup_seed(2023)
print_colored(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
if not os.path.isdir('checkpoints'):
os.mkdir('checkpoints')
if config.dataset=='vigor':
print("Dataset is VIGOR!")
train(config)