-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
73 lines (67 loc) · 3.33 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import tensorflow as tf
import numpy as np
import os
import matplotlib.pyplot as plt
from tqdm import tqdm
# Generator model
def generator64():
print("Generator model in progress")
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(128 * 16 * 16, activation="relu", input_shape=(100, )))
model.add(tf.keras.layers.Reshape((16, 16, 128)))
model.add(tf.keras.layers.UpSampling2D())
model.add(tf.keras.layers.Conv2D(128, kernel_size=3, padding="same"))
model.add(tf.keras.layers.BatchNormalization(momentum=0.8))
model.add(tf.keras.layers.Activation("relu"))
model.add(tf.keras.layers.UpSampling2D())
model.add(tf.keras.layers.Conv2D(64, kernel_size=3, padding="same"))
model.add(tf.keras.layers.BatchNormalization(momentum=0.8))
model.add(tf.keras.layers.Activation("relu"))
model.add(tf.keras.layers.Conv2D(3, kernel_size=3, padding="same"))
model.add(tf.keras.layers.Activation("tanh"))
return model
def discriminator64():
print("Discriminator model in progress")
model = tf.keras.Sequential()
model.add(tf.keras.layers.Reshape((64 * 64 * 3,), input_shape=(64, 64, 3)))
model.add(tf.keras.layers.Dense(256, activation="relu"))
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Dense(128, activation="relu"))
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Dense(1, activation="sigmoid"))
model.compile(optimizer=tf.keras.optimizers.Adam(lr=0.0002, beta_1=0.5), loss='binary_crossentropy', metrics=['accuracy'])
return model
def make_generator_model():
print("Generator model in progress")
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(128 * 16 * 16, activation="relu", input_shape=(100, )))
model.add(tf.keras.layers.Reshape((16, 16, 128)))
model.add(tf.keras.layers.UpSampling2D())
model.add(tf.keras.layers.Conv2D(128, kernel_size=3, padding="same"))
model.add(tf.keras.layers.BatchNormalization(momentum=0.8))
model.add(tf.keras.layers.Activation("relu"))
model.add(tf.keras.layers.UpSampling2D())
model.add(tf.keras.layers.Conv2D(64, kernel_size=3, padding="same"))
model.add(tf.keras.layers.BatchNormalization(momentum=0.8))
model.add(tf.keras.layers.Activation("relu"))
model.add(tf.keras.layers.Conv2D(3, kernel_size=3, padding="same"))
model.add(tf.keras.layers.Activation("tanh"))
return model
# Discriminator model
def make_discriminator_model():
print("Discriminator model in progress")
model = tf.keras.Sequential()
model.add(tf.keras.layers.Reshape((64 * 64 * 3,), input_shape=(64, 64, 3)))
model.add(tf.keras.layers.Dense(256, activation="relu"))
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Dense(128, activation="relu"))
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Dense(1, activation="sigmoid"))
model.compile(optimizer=tf.keras.optimizers.Adam(lr=0.0002, beta_1=0.5), loss='binary_crossentropy', metrics=['accuracy'])
return model
def define_gan(discriminator, generator):
discriminator.trainable = False
model = tf.keras.Sequential([generator, discriminator])
opt = tf.keras.optimizers.Adam(lr=0.0002, beta_1=0.5)
model.compile(loss='binary_crossentropy', optimizer=opt)
return model