Qing Xu1 Zhenye Lou2 Chenxin Li3 Yue Li1,4 Xiangjian He1✉
Tesema Fiseha Berhanu1 Rong Qu4 Wenting Duan5 Zhen Chen6
1UNNC 2Sichuan University 3CUHK 4University of Nottingham 5Univeristy of Lincoln 6HKISI, CAS
- [2025.04.08] The pre-print paper is now available! Fine-tuning the model with 1024×1024 image resolution and 16 batch sizes only needs 9.4GB GPU memory (~1 GTX1080ti or 1 RTX3060), 4 batch sizes only needs 2.6GB GPU memory (~1 GTX1060 3G). We hope everyone can enjoy our model.
- [2025.04.08] The checkpoint pre-trained on 0.1% SA-1B dataset is now available!
git clone https://github.com/xq141839/HER-Seg.git
cd HER-Seg
conda create -f HER-Seg.yaml
Key requirements: Cuda 11.8+, PyTorch 2.0+
- Distillation Pretraining (Optional): https://ai.meta.com/datasets/segment-anything-downloads/ ID: sa_000000.tar
- Dermoscopy: https://challenge.isic-archive.com/data/#2018
- X-ray: https://www.kaggle.com/code/nikhilpandey360/lung-segmentation-from-chest-x-ray-dataset/input
- Fundus: https://refuge.grand-challenge.org/
- Ultrasound: https://www.kaggle.com/datasets/jarintasnim090/udiat-data
- Microscopy: https://www.kaggle.com/competitions/data-science-bowl-2018
- CT: https://github.com/Beckschen/TransUNet/blob/main/datasets/README.md
- Colonoscopy: https://figshare.com/articles/figure/Polyp_DataSet_zip/21221579?file=37636550
The data structure is as follows.
HER-Seg
├── datasets
│ ├── image_1024
│ ├── ISIC_0000000.png
| ├── ...
| ├── mask_1024
│ ├── ISIC_0000000.png
| ├── ...
| ├── isic_data_split.json
| ├── ...
We provide all pre-trained models here.
Teacher Model | Pretraining Data | Checkpoints |
---|---|---|
SAM | 0.1% SA-1B | Link |
SAM2 | 0.1% SA-1B | TBA |
SAM | 1% SA-1B | TBA |
SAM2 | 1% SA-1B | TBA |
If you find this work helpful for your project,please consider citing the following paper:
@misc{xu2025hrmedsegunlockinghighresolutionmedical,
title={HRMedSeg: Unlocking High-resolution Medical Image segmentation via Memory-efficient Attention Modeling},
author={Qing Xu and Zhenye Lou and Chenxin Li and Xiangjian He and Rong Qu and Tesema Fiseha Berhanu and Yi Wang and Wenting Duan and Zhen Chen},
year={2025},
eprint={2504.06205},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2504.06205},
}