-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlabour.R
74 lines (67 loc) · 3.03 KB
/
labour.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
library(tidyverse)
library(tsibble)
library(fabletools)
library(magrittr)
library(lubridate)
library(fable)
library(dplyr)
library(hts)
#----------------------------------------------------------------------
# ABS - Unemployed persons by Duration of job search, State and Territory
##
## 6291.0.55.001 - UM2 - Unemployed persons by Duration of job search, State and Territory, January 1991 onwards
##
## Monthly series
## Duration of job search (Duration, 6) * State and territory (STT, 8): n = 63 series in total, nb = 48 series at the bottom level
##
## Training set: 2010Jan-2022Jul
## Test set: 2022Aug-2023Jul
#----------------------------------------------------------------------
# Import data
labour <- readr::read_csv("data/labour.csv") |>
mutate(Month = yearmonth(Month)) |>
filter(year(Month) >= 2010) |>
dplyr::rename(Duration = `Duration of job search`,
STT = `State and territory (STT): ASGS (2011)`,
Unemployed = `Unemployed total ('000)`) |>
as_tsibble(key = c(Duration, STT),
index = Month) |>
relocate(Month) |>
fill_gaps()
labour_fill <- labour |>
# use a random walk to give linear interpolation between points
model(naive = ARIMA(Unemployed ~ -1 + pdq(0,1,0) + PDQ(0,0,0))) |>
interpolate(labour)
labour_data <- labour_fill |>
mutate(Duration=replace(Duration, Duration=="Under 4 weeks (under 1 month)", "D1"),
Duration=replace(Duration, Duration=="4 weeks and under 13 weeks (1-3 months)", "D2"),
Duration=replace(Duration, Duration=="13 weeks and under 26 weeks (3-6 months)", "D3"),
Duration=replace(Duration, Duration=="26 weeks and under 52 weeks (6-12 months)", "D4"),
Duration=replace(Duration, Duration=="52 weeks and under 104 weeks (1-2 years)", "D5"),
Duration=replace(Duration, Duration=="104 weeks and over (2 years and over)", "D6")) |>
mutate(STT=replace(STT, STT=="Australian Capital Territory", "ACT"),
STT=replace(STT, STT=="New South Wales", "NSW"),
STT=replace(STT, STT=="Northern Territory", "NTT"),
STT=replace(STT, STT=="Queensland", "QLD"),
STT=replace(STT, STT=="South Australia", "SAS"),
STT=replace(STT, STT=="Tasmania", "TAS"),
STT=replace(STT, STT=="Victoria", "VIC"),
STT=replace(STT, STT=="Western Australia", "WAS")) |>
mutate(ID = paste0(Duration, STT)) |>
arrange(ID, Month)
labour_bts <- pull(labour_data, Unemployed) |>
matrix(nrow = length(unique(labour_data$Month)), ncol = 48, byrow = FALSE)
colnames(labour_bts) <- unique(labour_data$ID)
# Grouped time series
labour_gts <- gts(labour_bts, character=c(2,3),
gnames = c("Duration",
"STT"))
S <- smatrix(labour_gts)
labels <- do.call(c, labour_gts$labels) |>
as.character() %>%
c("Total", ., colnames(labour_gts$bts))
labour_gts <- (labour_gts$bts %*% t(S)) %>%
data.frame(1, unique(labour_data$Month), .)
colnames(labour_gts) <- c("Index", "Time", labels)
saveRDS(labour_gts, file = "data/labour_data.rds")
saveRDS(S, file = "data/labour_S.rds")