forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspaces-flat.tex
2414 lines (2153 loc) · 91.6 KB
/
spaces-flat.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Flatness on Algebraic Spaces}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter, we discuss some advanced results on flat modules and
flat morphisms in the setting of algebraic spaces. We strongly encourage
the reader to take a look at the corresponding
chapter in the setting of schemes first, see
More on Flatness, Section \ref{flat-section-introduction}.
A reference is the paper \cite{GruRay} by Raynaud and Gruson.
\section{Impurities}
\label{section-impure}
\noindent
The section is the analogue of
More on Flatness, Section \ref{flat-section-impure}.
\begin{situation}
\label{situation-pre-pure}
Let $S$ be a scheme. Let $f : X \to Y$ be a
finite type, decent\footnote{Quasi-separated morphisms are decent, see
Decent Spaces, Lemma
\ref{decent-spaces-lemma-properties-trivial-implications}.
For any morphism $\Spec(k) \to Y$ where $k$ is a field,
the algebraic space $X_k$ is of finite presentation over $k$
because it is of finite type over $k$ and quasi-separated by
Decent Spaces, Lemma
\ref{decent-spaces-lemma-locally-Noetherian-decent-quasi-separated}.}
morphism of algebraic spaces over $S$. Also, $\mathcal{F}$ is a finite type
quasi-coherent $\mathcal{O}_X$-module. Finally $y \in |Y|$ is a point of $Y$.
\end{situation}
\noindent
In this situation consider a scheme $T$, a morphism $g : T \to Y$,
a point $t \in T$ with $g(t) = y$, a specialization $t' \leadsto t$ in
$T$, and a point $\xi \in |X_T|$ lying over $t'$. Here $X_T = T \times_Y X$.
Picture
\begin{equation}
\label{equation-impurity}
\vcenter{
\xymatrix{
\xi \ar@{|->}[d] & \\
t' \ar@{~>}[r] & t \ar@{|->}[r] \ar[r] & y
}
}
\quad\quad
\vcenter{
\xymatrix{
X_T \ar[d]_{f_T} \ar[r] & X \ar[d]^f \\
T \ar[r]^g & Y
}
}
\end{equation}
Moreover, denote $\mathcal{F}_T$ the pullback of $\mathcal{F}$ to $X_T$.
\begin{definition}
\label{definition-impurity}
In
Situation \ref{situation-pre-pure}
we say a diagram (\ref{equation-impurity}) defines an
{\it impurity of $\mathcal{F}$ above $y$}
if $\xi \in \text{Ass}_{X_T/T}(\mathcal{F}_T)$ and
$t \not \in f_T(\overline{\{\xi\}})$. We will indicate
this by saying ``let $(g : T \to Y, t' \leadsto t, \xi)$ be
an impurity of $\mathcal{F}$ above $y$''.
\end{definition}
\noindent
Another way to say this is: $(g : T \to Y, t' \leadsto t, \xi)$ is
an impurity of $\mathcal{F}$ above $y$ if there exists no specialization
$\xi \leadsto \theta$ in the topological space $|X_T|$ with
$f_T(\theta) = t$. Specializations in non-decent algebraic spaces
do not behave well. If the morphism $f$ is decent, then $X_T$
is a decent algebraic space for all morphisms $g : T \to Y$ as above, see
Decent Spaces, Definition \ref{decent-spaces-definition-relative-conditions}.
\begin{lemma}
\label{lemma-impure-limit}
In Situation \ref{situation-pre-pure}.
Let $(g : T \to S, t' \leadsto t, \xi)$ be an impurity of
$\mathcal{F}$ above $y$. Assume $T = \lim_{i \in I} T_i$ is a directed limit
of affine schemes over $Y$. Then for some $i$ the triple
$(T_i \to Y, t'_i \leadsto t_i, \xi_i)$ is an impurity of
$\mathcal{F}$ above $y$.
\end{lemma}
\begin{proof}
The notation in the statement means this: Let $p_i : T \to T_i$
be the projection morphisms, let $t_i = p_i(t)$ and $t'_i = p_i(t')$.
Finally $\xi_i \in |X_{T_i}|$ is the image of $\xi$. By
Divisors on Spaces, Lemma
\ref{spaces-divisors-lemma-base-change-relative-assassin}
we have $\xi_i \in \text{Ass}_{X_{T_i}/T_i}(\mathcal{F}_{T_i})$.
Thus the only point is to show that
$t_i \not \in f_{T_i}(\overline{\{\xi_i\}})$ for some $i$.
\medskip\noindent
Let $Z_i \subset X_{T_i}$ be the reduced induced scheme structure
on $\overline{\{\xi_i\}} \subset |X_{T_i}|$
and let $Z \subset X_T$ be the reduced induced scheme structure on
$\overline{\{\xi\}} \subset |X_T|$.
Then $Z = \lim Z_i$ by
Limits of Spaces, Lemma \ref{spaces-limits-lemma-inverse-limit-irreducibles}
(the lemma applies because each $X_{T_i}$ is decent).
Choose a field $k$ and a morphism $\Spec(k) \to T$ whose image is $t$.
Then
$$
\emptyset =
Z \times_T \Spec(k) = (\lim Z_i) \times_{(\lim T_i)} \Spec(k)
= \lim Z_i \times_{T_i} \Spec(k)
$$
because limits commute with fibred products (limits commute with limits).
Each $Z_i \times_{T_i} \Spec(k)$ is quasi-compact because $X_{T_i} \to T_i$
is of finite type and hence $Z_i \to T_i$ is of finite type.
Hence $Z_i \times_{T_i} \Spec(k)$ is empty for some $i$ by
Limits of Spaces, Lemma \ref{spaces-limits-lemma-limit-nonempty}.
Since the image of the composition $\Spec(k) \to T \to T_i$ is $t_i$
we obtain what we want.
\end{proof}
\noindent
Impurities go up along flat base change.
\begin{lemma}
\label{lemma-flat-ascent-impurity}
In Situation \ref{situation-pre-pure}.
Let $(Y_1, y_1) \to (Y, y)$ be a morphism of pointed
algebraic spaces over $S$. Assume $Y_1 \to Y$ is flat at $y_1$.
If $(T \to Y, t' \leadsto t, \xi)$ is an impurity of
$\mathcal{F}$ above $y$, then there exists an impurity
$(T_1 \to Y_1, t_1' \leadsto t_1, \xi_1)$ of the pullback
$\mathcal{F}_1$ of $\mathcal{F}$ to $X_1 = Y_1 \times_Y X$
over $y_1$ such that $T_1$ is \'etale over $Y_1 \times_Y T$.
\end{lemma}
\begin{proof}
Choose an \'etale morphism $T_1 \to Y_1 \times_Y T$ where $T_1$
is a scheme and let $t_1 \in T_1$ be a point mapping to $y_1$ and $t$.
It is possible to find a pair $(T_1, t_1)$ like this by
Properties of Spaces, Lemma \ref{spaces-properties-lemma-points-cartesian}.
The morphism of schemes $T_1 \to T$ is flat at $t_1$
(use Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-base-change-flat}
and the definition of flat morphisms of algebraic spaces)
there exists a specialization $t'_1 \leadsto t_1$ lying over
$t' \leadsto t$, see
Morphisms, Lemma \ref{morphisms-lemma-generalizations-lift-flat}.
Choose a point $\xi_1 \in |X_{T_1}|$ mapping to $t'_1$
and $\xi$ with $\xi_1 \in \text{Ass}_{X_{T_1}/T_1}(\mathcal{F}_{T_1})$.
point of $\Spec(\kappa(t'_1) \otimes_{\kappa(t')} \kappa(\xi))$.
This is possible by
Divisors on Spaces, Lemma
\ref{spaces-divisors-lemma-base-change-relative-assassin}.
As the closure $Z_1$ of $\{\xi_1\}$ in $|X_{T_1}|$ maps into the
closure of $\{\xi\}$ in $|X_T|$ we conclude that
the image of $Z_1$ in $|T_1|$ cannot contain $t_1$.
Hence $(T_1 \to Y_1, t'_1 \leadsto t_1, \xi_1)$
is an impurity of $\mathcal{F}_1$ above $Y_1$.
\end{proof}
\begin{lemma}
\label{lemma-pure-along-X-y}
In Situation \ref{situation-pre-pure}. Let $\overline{y}$ be a geometric
point lying over $y$. Let $\mathcal{O} = \mathcal{O}_{Y, \overline{y}}$
be the \'etale local ring of $Y$ at $\overline{y}$. Denote
$Y^{sh} = \Spec(\mathcal{O})$, $X^{sh} = X \times_Y Y^{sh}$, and
$\mathcal{F}^{sh}$ the pullback of $\mathcal{F}$ to $X^{sh}$.
The following are equivalent
\begin{enumerate}
\item there exists an impurity
$(Y^{sh} \to Y, y' \leadsto \overline{y}, \xi)$
of $\mathcal{F}$ above $y$,
\item every point of $\text{Ass}_{X^{sh}/Y^{sh}}(\mathcal{F}^{sh})$
specializes to a point of the closed fibre $X_{\overline{y}}$,
\item there exists an impurity $(T \to Y, t' \leadsto t, \xi)$
of $\mathcal{F}$ above $y$ such that $(T, t) \to (Y, y)$ is an
\'etale neighbourhood, and
\item there exists an impurity $(T \to Y, t' \leadsto t, \xi)$
of $\mathcal{F}$ above $y$ such that $T \to Y$ is quasi-finite at $t$.
\end{enumerate}
\end{lemma}
\begin{proof}
That parts (1) and (2) are equivalent is immediate from the definition.
\medskip\noindent
Recall that $\mathcal{O} = \mathcal{O}_{Y, \overline{y}}$
is the filtered colimit of $\mathcal{O}(V)$ over the category
of \'etale neighbourhoods $(V, \overline{v}) \to (Y, \overline{y})$
(Properties of Spaces, Lemma \ref{spaces-properties-lemma-cofinal-etale}).
Moreover, it suffices to consider affine \'etale neighbourhoods $V$.
Hence $Y^{sh} = \Spec(\mathcal{O}) = \lim \Spec(\mathcal{O}(V)) = \lim V$.
Thus we see that (1) implies (3) by Lemma \ref{lemma-impure-limit}.
\medskip\noindent
Since an \'etale morphism is locally quasi-finite
(Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-etale-locally-quasi-finite})
we see that (3) implies (4).
\medskip\noindent
Finally, assume (4). After replacing $T$ by an open neighbourhood of $t$
we may assume $T \to Y$ is locally quasi-finite.
By Lemma \ref{lemma-flat-ascent-impurity}
we find an impurity
$(T_1 \to Y^{sh}, t_1' \leadsto t_1, \xi_1)$
with $T_1 \to T \times_Y Y^{sh}$
\'etale. Since an \'etale morphism is locally quasi-finite
and using Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-base-change-quasi-finite} and
Morphisms, Lemma \ref{morphisms-lemma-composition-quasi-finite}
we see that $T_1 \to Y^{sh}$ is locally quasi-finite.
As $\mathcal{O}$ is strictly henselian, we can apply More on Morphisms, Lemma
\ref{more-morphisms-lemma-etale-makes-quasi-finite-finite-at-point}
to see that after replacing $T_1$ by an open and closed neighbourhood
of $t_1$ we may assume that $T_1 \to Y^{sh} = \Spec(\mathcal{O})$
is finite. Let $\theta \in |X^{sh}|$ be the image of
$\xi_1$ and let $y' \in \Spec(\mathcal{O})$ be the image
of $t_1'$. By Divisors on Spaces, Lemma
\ref{spaces-divisors-lemma-base-change-relative-assassin}
we see that $\theta \in \text{Ass}_{X^{sh}/Y^{sh}}(\mathcal{F}^{sh})$.
Since $\pi : X_{T_1} \to X^{sh}$
is finite, it induces a closed map $|X_{T_1}| \to |X^{sh}|$.
Hence the image of $\overline{\{\xi_1\}}$ is $\overline{\{\theta\}}$.
It follows that $(Y^{sh} \to Y, y' \leadsto \overline{y}, \theta)$
is an impurity of $\mathcal{F}$ above $y$ and the proof is complete.
\end{proof}
\section{Relatively pure modules}
\label{section-pure}
\noindent
This section is the analogue of
More on Flatness, Section \ref{flat-section-pure}.
\begin{definition}
\label{definition-pure}
In Situation \ref{situation-pre-pure}.
\begin{enumerate}
\item We say $\mathcal{F}$ is {\it pure above $y$} if {\bf none} of the
equivalent conditions of Lemma \ref{lemma-pure-along-X-y} hold.
\item We say $\mathcal{F}$ is {\it universally pure above $y$}
if there does not exist any impurity of $\mathcal{F}$ above $y$.
\item We say that $X$ is {\it pure above $y$} if $\mathcal{O}_X$
is pure above $y$.
\item We say $\mathcal{F}$ is {\it universally $Y$-pure}, or
{\it universally pure relative to $Y$} if $\mathcal{F}$ is universally
pure above $y$ for every $y \in |Y|$.
\item We say $\mathcal{F}$ is {\it $Y$-pure}, or
{\it pure relative to $Y$} if $\mathcal{F}$ is pure above $y$
for every $y \in |Y|$.
\item We say that $X$ is {\it $Y$-pure} or {\it pure relative to $Y$}
if $\mathcal{O}_X$ is pure relative to $Y$.
\end{enumerate}
\end{definition}
\noindent
The obligatory lemmas follow.
\begin{lemma}
\label{lemma-base-change-universally}
In Situation \ref{situation-pre-pure}.
\begin{enumerate}
\item $\mathcal{F}$ is universally pure above $y$, and
\item for every morphism $(Y', y') \to (Y, y)$ of pointed algebraic spaces
the pullback $\mathcal{F}_{Y'}$ is pure above $y'$.
\end{enumerate}
In particular, $\mathcal{F}$ is universally pure relative to $Y$ if and
only if every base change $\mathcal{F}_{Y'}$ of $\mathcal{F}$ is
pure relative to $Y'$.
\end{lemma}
\begin{proof}
This is formal.
\end{proof}
\begin{lemma}
\label{lemma-quasi-finite-base-change}
In Situation \ref{situation-pre-pure}.
Let $(Y', y') \to (Y, y)$ be a morphism of pointed algebraic spaces.
If $Y' \to Y$ is quasi-finite at $y'$ and $\mathcal{F}$ is pure above $y$,
then $\mathcal{F}_{Y'}$ is pure above $y'$.
\end{lemma}
\begin{proof}
It $(T \to Y', t' \leadsto t, \xi)$ is an impurity of
$\mathcal{F}_{Y'}$ above $y'$ with $T \to Y'$ quasi-finite at $t$,
then $(T \to Y, t' \to t, \xi)$ is an impurity of $\mathcal{F}$
above $y$ with $T \to Y$ quasi-finite at $t$, see
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-composition-quasi-finite}.
Hence the lemma follows immediately from the definition of purity.
\end{proof}
\noindent
Purity satisfies flat descent.
\begin{lemma}
\label{lemma-flat-descend-pure}
In Situation \ref{situation-pre-pure}.
Let $(Y_1, y_1) \to (Y, y)$ be a morphism of pointed algebraic spaces.
Assume $Y_1 \to Y$ is flat at $y_1$.
\begin{enumerate}
\item If $\mathcal{F}_{Y_1}$ is pure above $y_1$,
then $\mathcal{F}$ is pure above $y$.
\item If $\mathcal{F}_{Y_1}$ is universally pure above $y_1$,
then $\mathcal{F}$ is universally pure above $y$.
\end{enumerate}
\end{lemma}
\begin{proof}
This is true because impurities go up along a flat base change, see
Lemma \ref{lemma-flat-ascent-impurity}. For example
part (1) follows because by any impurity $(T \to Y, t' \leadsto t, \xi)$
of $\mathcal{F}$ above $y$ with $T \to Y$ quasi-finite at $t$
by the lemma leads to an impurity
$(T_1 \to Y_1, t_1' \leadsto t_1, \xi_1)$ of the pullback
$\mathcal{F}_1$ of $\mathcal{F}$ to $X_1 = Y_1 \times_Y X$
over $y_1$ such that $T_1$ is \'etale over $Y_1 \times_Y T$.
Hence $T_1 \to Y_1$ is quasi-finite at $t_1$ because
\'etale morphisms are locally quasi-finite and compositions
of locally quasi-finite morphisms are locally quasi-finite
(Morphisms of Spaces, Lemmas
\ref{spaces-morphisms-lemma-etale-locally-quasi-finite} and
\ref{spaces-morphisms-lemma-composition-quasi-finite}).
Similarly for part (2).
\end{proof}
\begin{lemma}
\label{lemma-supported-on-closed}
In Situation \ref{situation-pre-pure}. Let $i : Z \to X$ be a closed immersion
and assume that $\mathcal{F} = i_*\mathcal{G}$ for some
finite type, quasi-coherent sheaf $\mathcal{G}$ on $Z$.
Then $\mathcal{G}$ is (universally) pure above $y$
if and only if $\mathcal{F}$ is (universally) pure above $y$.
\end{lemma}
\begin{proof}
This follows from Divisors on Spaces, Lemma
\ref{spaces-divisors-lemma-relative-weak-assassin-finite}.
\end{proof}
\begin{lemma}
\label{lemma-proper-pure}
In Situation \ref{situation-pre-pure}.
\begin{enumerate}
\item If the support of $\mathcal{F}$ is proper over $Y$, then
$\mathcal{F}$ is universally pure relative to $Y$.
\item If $f$ is proper, then
$\mathcal{F}$ is universally pure relative to $Y$.
\item If $f$ is proper, then $X$ is universally pure relative to $Y$.
\end{enumerate}
\end{lemma}
\begin{proof}
First we reduce (1) to (2). Namely, let $Z \subset X$ be the
scheme theoretic support of $\mathcal{F}$
(Morphisms of Spaces, Definition
\ref{spaces-morphisms-definition-scheme-theoretic-support}). Let $i : Z \to X$
be the corresponding closed immersion and write
$\mathcal{F} = i_*\mathcal{G}$ for some finite type quasi-coherent
$\mathcal{O}_Z$-module $\mathcal{G}$.
In case (1) $Z \to Y$ is proper by assumption.
Thus by Lemma \ref{lemma-supported-on-closed} case (1) reduces to case (2).
\medskip\noindent
Assume $f$ is proper.
Let $(g : T \to Y, t' \leadsto t, \xi)$ be an impurity of $\mathcal{F}$
above $y$. Since $f$ is proper, it is universally closed. Hence
$f_T : X_T \to T$ is closed. Since $f_T(\xi) = t'$ this implies that
$t \in f(\overline{\{\xi\}})$ which is a contradiction.
\end{proof}
\section{Flat finite type modules}
\label{section-finite-type-flat}
\noindent
Please compare with
More on Flatness, Sections
\ref{flat-section-finite-type-flat-I},
\ref{flat-section-finite-type-flat-II}, and
\ref{flat-section-finite-type-flat-III}.
Most of these results have immediate consequences
of algebraic spaces by \'etale localization.
\begin{lemma}
\label{lemma-existence-complete}
Let $S$ be a scheme.
Let $X \to Y$ be a finite type morphism of algebraic spaces over $S$.
Let $\mathcal{F}$ be a finite type quasi-coherent $\mathcal{O}_X$-module.
Let $y \in |Y|$ be a point. There exists an \'etale morphism
$(Y', y') \to (Y, y)$ with $Y'$ an affine scheme and \'etale morphisms
$h_i : W_i \to X_{Y'}$, $i = 1, \ldots, n$ such that for each
$i$ there exists a complete d\'evissage of $\mathcal{F}_i/W_i/Y'$ over $y'$,
where $\mathcal{F}_i$ is the pullback of $\mathcal{F}$ to $W_i$
and such that $|(X_{Y'})_{y'}| \subset \bigcup h_i(W_i)$.
\end{lemma}
\begin{proof}
The question is \'etale local on $Y$ hence we may assume $Y$
is an affine scheme. Then $X$ is quasi-compact, hence we can
choose an affine scheme $X'$ and a surjective \'etale morphism
$X' \to X$. Then we may apply
More on Flatness, Lemma \ref{flat-lemma-existence-complete}
to $X' \to Y$, $(X' \to Y)^*\mathcal{F}$, and $y$ to
get what we want.
\end{proof}
\begin{lemma}
\label{lemma-open-in-fibre-where-flat}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$
which is locally of finite type.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module of finite type.
Let $y \in |Y|$ and $F = f^{-1}(\{y\}) \subset |X|$. Then the set
$$
\{x \in F \mid \mathcal{F} \text{ flat over }Y\text{ at }x\}
$$
is open in $F$.
\end{lemma}
\begin{proof}
Choose a scheme $V$, a point $v \in V$, and an \'etale morphism $V \to Y$
mapping $v$ to $y$. Choose a scheme $U$ and a surjective \'etale
morphism $U \to V \times_Y X$. Then $|U_v| \to F$ is an open continuous
map of topological spaces as $|U| \to |X|$ is continuous and open.
Hence the result follows from the case of schemes which is
More on Flatness, Lemma \ref{flat-lemma-open-in-fibre-where-flat}.
\end{proof}
\begin{lemma}
\label{lemma-bourbaki-finite-type-general-base-at-point}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$ which is
locally of finite type. Let $x \in |X|$ with image $y \in |Y|$.
Let $\mathcal{F}$ be a finite type quasi-coherent sheaf on $X$.
Let $\mathcal{G}$ be a quasi-coherent sheaf on $Y$.
If $\mathcal{F}$ is flat at $x$ over $Y$, then
$$
x \in \text{WeakAss}_X(\mathcal{F} \otimes_{\mathcal{O}_X} f^*\mathcal{G})
\Leftrightarrow
y \in \text{WeakAss}_Y(\mathcal{G})
\text{ and }
x \in \text{Ass}_{X/Y}(\mathcal{F}).
$$
\end{lemma}
\begin{proof}
Choose a commutative diagram
$$
\xymatrix{
U \ar[d] \ar[r]_g & V \ar[d] \\
X \ar[r]^f & Y
}
$$
where $U$ and $V$ are schemes and the vertical arrows are surjective \'etale.
Choose $u \in U$ mapping to $x$. Let $\mathcal{E} = \mathcal{F}|_U$
and $\mathcal{H} = \mathcal{G}|_V$.
Let $v \in V$ be the image of $u$. Then
$x \in \text{WeakAss}_X(\mathcal{F} \otimes_{\mathcal{O}_X} f^*\mathcal{G})$
if and only if
$u \in \text{WeakAss}_X(\mathcal{E} \otimes_{\mathcal{O}_X} g^*\mathcal{H})$
by Divisors on Spaces, Definition
\ref{spaces-divisors-definition-weakly-associated}.
Similarly, $y \in \text{WeakAss}_Y(\mathcal{G})$ if and only if
$v \in \text{WeakAss}_V(\mathcal{H})$.
Finally, we have $x \in \text{Ass}_{X/Y}(\mathcal{F})$ if and only if
$u \in \text{Ass}_{U_v}(\mathcal{E}|_{U_v})$ by
Divisors on Spaces, Definition
\ref{spaces-divisors-definition-relative-weak-assassin}.
Observe that flatness of $\mathcal{F}$ at $x$ is
equivalent to flatness of $\mathcal{E}$ at $u$, see
Morphisms of Spaces, Definition \ref{spaces-morphisms-definition-flat-module}.
The equivalence for $g : U \to V$, $\mathcal{E}$, $\mathcal{H}$, $u$, and $v$
is More on Flatness, Lemma
\ref{flat-lemma-bourbaki-finite-type-general-base-at-point}.
\end{proof}
\begin{lemma}
\label{lemma-bourbaki-finite-type-general-base}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces
over $S$ which is locally of finite type.
Let $\mathcal{F}$ be a finite type quasi-coherent sheaf on $X$
which is flat over $Y$. Let $\mathcal{G}$ be a quasi-coherent sheaf on $Y$.
Then we have
$$
\text{WeakAss}_X(\mathcal{F} \otimes_{\mathcal{O}_X} f^*\mathcal{G}) =
\text{Ass}_{X/Y}(\mathcal{F}) \cap
|f|^{-1}(\text{WeakAss}_Y(\mathcal{G}))
$$
\end{lemma}
\begin{proof}
Immediate consequence of
Lemma \ref{lemma-bourbaki-finite-type-general-base-at-point}.
\end{proof}
\begin{lemma}
\label{lemma-finite-type-flat-along-fibre-free-variant}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces
over $S$. Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$.
Let $y \in |Y|$. Set $F = f^{-1}(\{y\}) \subset |X|$. Assume that
\begin{enumerate}
\item $f$ is of finite type,
\item $\mathcal{F}$ is of finite type, and
\item $\mathcal{F}$ is flat over $Y$ at all $x \in F$.
\end{enumerate}
Then there exists an \'etale morphism $(Y', y') \to (Y, y)$
where $Y'$ is a scheme and a commutative diagram of algebraic spaces
$$
\xymatrix{
X \ar[d] & X' \ar[l]^g \ar[d] \\
Y & \Spec(\mathcal{O}_{Y', y'}) \ar[l]
}
$$
such that $X' \to X \times_Y \Spec(\mathcal{O}_{Y', y'})$
is \'etale, $|X'_{y'}| \to F$ is surjective, $X'$ is affine,
and $\Gamma(X', g^*\mathcal{F})$ is a free $\mathcal{O}_{Y', y'}$-module.
\end{lemma}
\begin{proof}
Choose an \'etale morphism $(Y', y') \to (Y, y)$ where $Y'$ is an
affine scheme. Then $X \times_Y Y'$ is quasi-compact.
Choose an affine scheme $X'$ and a surjective \'etale morphism
$X' \to X \times_Y Y'$. Picture
$$
\xymatrix{
X \ar[d] & X' \ar[l]^g \ar[d] \\
Y & Y' \ar[l]
}
$$
Then $\mathcal{F}' = g^*\mathcal{F}$ is flat over $Y'$ at all
points of $X'_{y'}$, see Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-base-change-module-flat}.
Hence we can apply the lemma in the case of schemes
(More on Flatness, Lemma
\ref{flat-lemma-finite-type-flat-along-fibre-free-variant})
to the morphism
$X' \to Y'$, the quasi-coherent sheaf $g^*\mathcal{F}$, and the point $y'$.
This gives an \'etale morphism $(Y'', y'') \to (Y', y')$ and a commutative
diagram
$$
\xymatrix{
X \ar[d] & X' \ar[l]^g \ar[d] & X'' \ar[l]^{g'} \ar[d] \\
Y & Y' \ar[l] & \Spec(\mathcal{O}_{Y'', y''}) \ar[l]
}
$$
To get what we want we take $(Y'', y'') \to (Y, y)$
and $g \circ g' : X'' \to X$.
\end{proof}
\begin{theorem}
\label{theorem-check-flatness-at-associated-points}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$
which is locally of finite type.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module of finite type.
Let $x \in |X|$ with image $y \in |Y|$.
Set $F = f^{-1}(\{y\}) \subset |X|$.
Consider the conditions
\begin{enumerate}
\item $\mathcal{F}$ is flat at $x$ over $Y$, and
\item for every $x' \in F \cap \text{Ass}_{X/Y}(\mathcal{F})$ which
specializes to $x$ we have that $\mathcal{F}$ is flat at $x'$ over $Y$.
\end{enumerate}
Then we always have (2) $\Rightarrow$ (1). If $X$ and $Y$ are
decent, then (1) $\Rightarrow$ (2).
\end{theorem}
\begin{proof}
Assume (2).
Choose a scheme $V$ and a surjective \'etale morphism $V \to Y$.
Choose a scheme $U$ and a surjective \'etale morphism $U \to V \times_Y X$.
Choose a point $u \in U$ mapping to $x$. Let $v \in V$ be the image of $u$.
We will deduce the result from the corresponding result for
$\mathcal{F}|_U = (U \to X)^*\mathcal{F}$ and the point $u$.
$U_v$. This works because $\text{Ass}_{U/V}(\mathcal{F}|_U) \cap |U_v|$
is equal to $\text{Ass}_{U_v}(\mathcal{F}|_{U_v})$ and equal to the inverse
image of $F \cap \text{Ass}_{X/Y}(\mathcal{F})$.
Since the map $|U_v| \to F$ is continuous we see that
specializations in $|U_v|$ map to specializations in $F$,
hence condition (2) is inherited by $U \to V$,
$\mathcal{F}|_U$, and the point $u$.
Thus More on Flatness, Theorem
\ref{flat-theorem-check-flatness-at-associated-points} applies
and we conclude that (1) holds.
\medskip\noindent
If $Y$ is decent, then we can represent
$y$ by a quasi-compact monomorphism $\Spec(k) \to Y$
(by definition of decent spaces, see
Decent Spaces, Definition \ref{decent-spaces-definition-very-reasonable}).
Then $F = |X_k|$, see
Decent Spaces, Lemma \ref{decent-spaces-lemma-topology-fibre}.
If in addition $X$ is decent (or more generally if $f$ is decent, see
Decent Spaces, Definition \ref{decent-spaces-definition-relative-conditions}
and Decent Spaces, Lemma
\ref{decent-spaces-lemma-property-for-morphism-out-of-property}),
then $X_y$ is a decent space too. Furthermore, specializations in
$F$ can be lifted to specializations
in $U_v \to X_y$, see
Decent Spaces, Lemma \ref{decent-spaces-lemma-decent-specialization}.
Having said this it is clear that the reverse implication
holds, because it holds in the case of schemes.
\end{proof}
\begin{lemma}
\label{lemma-check-along-closed-fibre}
Let $S$ be a local scheme with closed point $s$.
Let $f : X \to S$ be a morphism from an algebraic space $X$ to $S$
which is locally of finite type.
Let $\mathcal{F}$ be a finite type quasi-coherent $\mathcal{O}_X$-module.
Assume that
\begin{enumerate}
\item every point of $\text{Ass}_{X/S}(\mathcal{F})$ specializes
to a point of the closed fibre $X_s$\footnote{For example this holds if
$f$ is finite type and $\mathcal{F}$ is pure along $X_s$, or
if $f$ is proper.},
\item $\mathcal{F}$ is flat over $S$ at every point of $X_s$.
\end{enumerate}
Then $\mathcal{F}$ is flat over $S$.
\end{lemma}
\begin{proof}
This is immediate from the fact that it suffices to check for
flatness at points of the relative assassin of $\mathcal{F}$
over $S$ by
Theorem \ref{theorem-check-flatness-at-associated-points}.
\end{proof}
\section{Flat finitely presented modules}
\label{section-finitely-presented-flat}
\noindent
This is the analogue of More on Flatness, Section
\ref{flat-section-finitely-presented-flat}.
\begin{proposition}
\label{proposition-finite-presentation-flat-at-point}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$.
Let $x \in |X|$ with image $y \in |Y|$.
Assume that
\begin{enumerate}
\item $f$ is locally of finite presentation,
\item $\mathcal{F}$ is of finite presentation, and
\item $\mathcal{F}$ is flat at $x$ over $Y$.
\end{enumerate}
Then there exists a commutative diagram of pointed schemes
$$
\xymatrix{
(X, x) \ar[d] & (X', x') \ar[l]^g \ar[d] \\
(Y, y) & (Y', y') \ar[l]
}
$$
whose horizontal arrows are \'etale such that $X'$, $Y'$
are affine and such that
$\Gamma(X', g^*\mathcal{F})$ is a projective
$\Gamma(Y', \mathcal{O}_{Y'})$-module.
\end{proposition}
\begin{proof}
As formulated this proposition immmediately reduces
to the case of schemes, which is
More on Flatness, Proposition
\ref{flat-proposition-finite-presentation-flat-at-point}.
\end{proof}
\begin{lemma}
\label{lemma-finite-presentation-flat-along-fibre}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$.
Let $y \in |Y|$. Set $F = f^{-1}(\{y\}) \subset |X|$. Assume that
\begin{enumerate}
\item $f$ is of finite presentation,
\item $\mathcal{F}$ is of finite presentation, and
\item $\mathcal{F}$ is flat over $Y$ at all $x \in F$.
\end{enumerate}
Then there exists a commutative diagram of algebraic spaces
$$
\xymatrix{
X \ar[d] & X' \ar[l]^g \ar[d] \\
Y & Y' \ar[l]_h
}
$$
such that $h$ and $g$ are \'etale, there is a point
$y' \in |Y'|$ mapping to $y$, we have $F \subset g(|X'|)$,
the algebraic spaces $X'$, $Y'$ are affine, and
$\Gamma(X', g^*\mathcal{F})$ is a projective
$\Gamma(Y', \mathcal{O}_{Y'})$-module.
\end{lemma}
\begin{proof}
As formulated this lemma immmediately reduces
to the case of schemes, which is
More on Flatness, Lemma
\ref{flat-lemma-finite-presentation-flat-along-fibre}.
\end{proof}
\section{A criterion for purity}
\label{section-criterion-purity}
\noindent
This section is the analogue of More on Flatness, Section
\ref{flat-section-criterion-purity}.
\begin{lemma}
\label{lemma-associated-point-specializes}
Let $S$ be a scheme. Let $X$ be a decent algebraic space
locally of finite type over $S$.
Let $\mathcal{F}$ be a finite type, quasi-coherent $\mathcal{O}_X$-module.
Let $s \in S$ such that $\mathcal{F}$ is flat over $S$ at all points of $X_s$.
Let $x' \in \text{Ass}_{X/S}(\mathcal{F})$. If
the closure of $\{x'\}$ in $|X|$ meets $|X_s|$, then the closure
meets $\text{Ass}_{X/S}(\mathcal{F}) \cap |X_s|$.
\end{lemma}
\begin{proof}
Observe that $|X_s| \subset |X|$ is the set of points of $|X|$
lying over $s \in S$, see
Decent Spaces, Lemma \ref{decent-spaces-lemma-topology-fibre}.
Let $t \in |X_s|$ be a specialization of $x'$ in $|X|$.
Choose an affine scheme $U$ and a point $u \in U$ and
an \'etale morphism $\varphi : U \to X$ mapping $u$ to $t$.
By Decent Spaces, Lemma \ref{decent-spaces-lemma-decent-specialization}
we can choose a specialization $u' \leadsto u$
with $u'$ mapping to $x'$. Set $g = f \circ \varphi$.
Observe that $s' = g(u') = f(x')$ specializes to $s$.
By our definition of $\text{Ass}_{X/S}(\mathcal{F})$
we have $u' \in \text{Ass}_{U/S}(\varphi^*\mathcal{F})$.
By the schemes version of this lemma
(More on Flatness, Lemma \ref{flat-lemma-associated-point-specializes})
we see that there is a specialization $u' \leadsto u$ with
$u \in \text{Ass}_{U_s}(\varphi^*\mathcal{F}_s) =
\text{Ass}_{U/S}(\varphi^*\mathcal{F}) \cap U_s$.
Hence $x = \varphi(u) \in \text{Ass}_{X/S}(\mathcal{F})$
lies over $s$ and the lemma is proved.
\end{proof}
\begin{lemma}
\label{lemma-contains-relative-ass-after-base-change}
Let $Y$ be an algebraic space over a scheme $S$. Let $g : X' \to X$ be a
morphism of algebraic spaces over $Y$ with $X$ locally of finite type over $Y$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
If $\text{Ass}_{X/Y}(\mathcal{F}) \subset g(|X'|)$, then for any morphism
$Z \to Y$ we have $\text{Ass}_{X_Z/Z}(\mathcal{F}_Z) \subset g_Z(|X'_Z|)$.
\end{lemma}
\begin{proof}
By Properties of Spaces, Lemma \ref{spaces-properties-lemma-points-cartesian}
the map $|X'_Z| \to |X_Z| \times_{|X|} |X'|$ is surjective as
$X'_Z$ is equal to $X_Z \times_X X'$.
By Divisors on Spaces, Lemma
\ref{spaces-divisors-lemma-base-change-relative-assassin}
the map $|X_Z| \to |X|$ sends $\text{Ass}_{X_Z/Z}(\mathcal{F}_Z)$
into $\text{Ass}_{X/Y}(\mathcal{F})$. The lemma follows.
\end{proof}
\begin{lemma}
\label{lemma-pure-on-top}
Let $Y$ be an algebraic space over a scheme $S$. Let $g : X' \to X$ be an
\'etale morphism of algebraic spaces over $Y$. Assume the structure
morphisms $X' \to Y$ and $X \to Y$ are decent and of finite type.
Let $\mathcal{F}$ be a finite type, quasi-coherent $\mathcal{O}_X$-module.
Let $y \in |Y|$. Set $F = f^{-1}(\{y\}) \subset |X|$.
\begin{enumerate}
\item If $\text{Ass}_{X/Y}(\mathcal{F}) \subset g(|X'|)$
and $g^*\mathcal{F}$ is (universally) pure above $y$, then
$\mathcal{F}$ is (universally) pure above $y$.
\item If $\mathcal{F}$ is pure above $y$, $g(|X'|)$ contains $F$, and
$Y$ is affine local with closed point $y$, then
$\text{Ass}_{X/Y}(\mathcal{F}) \subset g(|X'|)$.
\item If $\mathcal{F}$ is pure above $y$, $\mathcal{F}$ is flat
at all points of $F$, $g(|X'|)$ contains
$\text{Ass}_{X/Y}(\mathcal{F}) \cap F$, and $Y$ is affine local
with closed point $y$, then
$\text{Ass}_{X/Y}(\mathcal{F}) \subset g(|X'|)$.
\item Add more here.
\end{enumerate}
\end{lemma}
\begin{proof}
The assumptions on $X \to Y$ and $X' \to Y$ guarantee that
we may apply the material in Sections \ref{section-impure} and
\ref{section-pure}
to these morphisms and the sheaves $\mathcal{F}$ and $g^*\mathcal{F}$.
Since $g$ is \'etale we see that
$\text{Ass}_{X'/Y}(g^*\mathcal{F})$
is the inverse image of $\text{Ass}_{X/Y}(\mathcal{F})$
and the same remains true after base change.
\medskip\noindent
Proof of (1). Assume $\text{Ass}_{X/Y}(\mathcal{F}) \subset g(|X'|)$.
Suppose that $(T \to Y, t' \leadsto t, \xi)$
is an impurity of $\mathcal{F}$ above $y$. Since
$\text{Ass}_{X_T/T}(\mathcal{F}_T) \subset g_T(|X'_T|)$ by
Lemma \ref{lemma-contains-relative-ass-after-base-change}
we can choose
a point $\xi' \in |X'_T|$ mapping to $\xi$. By the above we see
that $(T \to Y, t' \leadsto t, \xi')$ is an impurity of
$g^*\mathcal{F}$ above $y'$. This implies (1) is true.
\medskip\noindent
Proof of (2). This follows from the fact that $g(|X'|)$ is open
in $|X|$ and the fact that by purity every point of
$\text{Ass}_{X/Y}(\mathcal{F})$ specializes to a point of $F$.
\medskip\noindent
Proof of (3). This follows from the fact that $g(|X'|)$ is open
in $|X|$ and the fact that by purity combined with
Lemma \ref{lemma-associated-point-specializes} every point of
$\text{Ass}_{X/Y}(\mathcal{F})$ specializes to a point of
$\text{Ass}_{X/Y}(\mathcal{F}) \cap F$.
\end{proof}
\begin{lemma}
\label{lemma-finite-type-flat-pure-along-fibre-is-universal}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic
spaces over $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Let $y \in |Y|$.
Assume
\begin{enumerate}
\item $f$ is decent and of finite type,
\item $\mathcal{F}$ is of finite type,
\item $\mathcal{F}$ is flat over $Y$ at all points lying over $y$, and
\item $\mathcal{F}$ is pure above $y$.
\end{enumerate}
Then $\mathcal{F}$ is universally pure above $y$.
\end{lemma}
\begin{proof}
Consider the morphism $\Spec(\mathcal{O}_{Y, \overline{y}}) \to Y$.
This is a flat morphism from the spectrum of a stricly henselian
local ring which maps the closed point to $y$.
By Lemma \ref{lemma-flat-descend-pure} we reduce to the case
described in the next paragraph.
\medskip\noindent
Assume $Y$ is the spectrum of a strictly henselian local ring $R$
with closed point $y$.
By Lemma \ref{lemma-finite-type-flat-along-fibre-free-variant}
there exists an \'etale morphism $g : X' \to X$ with
$g(|X'|) \supset |X_y|$, with $X'$ affine, and with
$\Gamma(X', g^*\mathcal{F})$ a free $R$-module.
Then $g^*\mathcal{F}$ is universally pure relative to $Y$, see
More on Flatness, Lemma \ref{flat-lemma-affine-locally-projective-pure}.
Hence it suffices to prove that
$g(|X'|)$ contains $\text{Ass}_{X/Y}(\mathcal{F})$
by Lemma \ref{lemma-pure-on-top} part (1).
This in turn follows from
Lemma \ref{lemma-pure-on-top} part (2).
\end{proof}
\begin{lemma}
\label{lemma-finite-type-flat-pure-is-universal}
Let $S$ be a scheme.
Let $f : X \to Y$ be a decent, finite type morphism of algebraic
spaces over $S$.
Let $\mathcal{F}$ be a finite type quasi-coherent $\mathcal{O}_X$-module.
Assume $\mathcal{F}$ is flat over $Y$. In this case
$\mathcal{F}$ is pure relative to $Y$ if and only if $\mathcal{F}$
is universally pure relative to $Y$.
\end{lemma}
\begin{proof}
Immediate consequence of
Lemma \ref{lemma-finite-type-flat-pure-along-fibre-is-universal}
and the definitions.
\end{proof}
\begin{lemma}
\label{lemma-universally-separating}
Let $Y$ be an algebraic space over a scheme $S$.
Let $g : X' \to X$ be a flat morphism of algebraic spaces over $Y$
with $X$ locally of finite type over $Y$.
Let $\mathcal{F}$ be a finite type quasi-coherent $\mathcal{O}_X$-module
which is flat over $Y$. If $\text{Ass}_{X/Y}(\mathcal{F}) \subset g(|X'|)$
then the canonical map
$$
\mathcal{F} \longrightarrow g_*g^*\mathcal{F}
$$
is injective, and remains injective after any base change.
\end{lemma}
\begin{proof}
The final assertion means that $\mathcal{F}_Z \to (g_Z)_*g_Z^*\mathcal{F}_Z$
is injective for any morphism $Z \to Y$. Since the assumption on
the relative assassin is preserved by base change
(Lemma \ref{lemma-contains-relative-ass-after-base-change})
it suffices to prove the injectivity of the displayed arrow.
\medskip\noindent
Let $\mathcal{K} = \Ker(\mathcal{F} \to g_*g^*\mathcal{F})$.
Our goal is to prove that $\mathcal{K} = 0$.
In order to do this it suffices to prove that
$\text{WeakAss}_X(\mathcal{K}) = \emptyset$, see
Divisors on Spaces, Lemma \ref{spaces-divisors-lemma-weakly-ass-zero}.
We have
$\text{WeakAss}_X(\mathcal{K}) \subset \text{WeakAss}_X(\mathcal{F})$, see
Divisors on Spaces, Lemma \ref{spaces-divisors-lemma-ses-weakly-ass}.
As $\mathcal{F}$ is flat we see from
Lemma \ref{lemma-bourbaki-finite-type-general-base}
that $\text{WeakAss}_X(\mathcal{F}) \subset \text{Ass}_{X/Y}(\mathcal{F})$.
By assumption any point $x$ of $\text{Ass}_{X/Y}(\mathcal{F})$
is the image of some $x' \in |X'|$. Since $g$ is flat the
local ring map
$\mathcal{O}_{X, \overline{x}} \to \mathcal{O}_{X', \overline{x}'}$
is faithfully flat, hence the map
$$
\mathcal{F}_{\overline{x}}
\longrightarrow
(g^*\mathcal{F})_{\overline{x}'} =
\mathcal{F}_{\overline{x}} \otimes_{\mathcal{O}_{X, \overline{x}}}
\mathcal{O}_{X', \overline{x}'}
$$
is injective (see
Algebra, Lemma \ref{algebra-lemma-faithfully-flat-universally-injective}).
Since the displayed arrow factors through
$\mathcal{F}_{\overline{x}} \to (g_*g^*\mathcal{F})_{\overline{x}}$,
we conclude that
$\mathcal{K}_{\overline{x}} = 0$. Hence $x$ cannot be a weakly associated
point of $\mathcal{K}$ and we win.
\end{proof}
\section{Flattening functors}
\label{section-F-zero}
\noindent
This section is the analogue of
More on Flatness, Section \ref{flat-section-flattening-functors}.
We urge the reader to skip this section on a first reading.
\begin{situation}
\label{situation-iso}
Let $S$ be a scheme.
Let $f : X \to B$ be a morphism of algebraic spaces over $S$.
Let $u : \mathcal{F} \to \mathcal{G}$ be a homomorphism of
quasi-coherent $\mathcal{O}_X$-modules. For any scheme $T$ over
$B$ we will denote $u_T : \mathcal{F}_T \to \mathcal{G}_T$ the
base change of $u$ to $T$, in other words, $u_T$ is the pullback
of $u$ via the projection morphism $X_T = X \times_B T \to X$.
In this situation we can consider the functor
\begin{equation}
\label{equation-iso}
F_{iso} : (\Sch/B)^{opp} \longrightarrow \textit{Sets}, \quad
T \longrightarrow \left\{
\begin{matrix}