This repository has been archived by the owner on Sep 30, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate.py
151 lines (128 loc) · 5.43 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# coding: utf-8
"""
Synthesis waveform for testset
usage: evaluate.py [options] <checkpoint> <dst_dir>
options:
--data-root=<dir> Directory contains preprocessed features.
--hparams=<parmas> Hyper parameters [default: ].
--preset=<json> Path of preset parameters (json).
--length=<T> Steps to generate [default: 32000].
--speaker-id=<N> Use specific speaker of data in case for multi-speaker datasets.
--initial-value=<n> Initial value for the WaveNet decoder.
--file-name-suffix=<s> File name suffix [default: ].
--output-html Output html for blog post.
--num-utterances=N> Generate N utterenaces per speaker [default: -1].
-h, --help Show help message.
"""
from docopt import docopt
import sys
import os
from os.path import dirname, join, basename, splitext
import torch
import numpy as np
from nnmnkwii import preprocessing as P
from keras.utils import np_utils
from tqdm import tqdm
import librosa
from wavenet.util import is_mulaw_quantize, is_mulaw, is_raw
import audio
from hparams import hparams
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
if __name__ == "__main__":
args = docopt(__doc__)
print("Command line args:\n", args)
data_root = args["--data-root"]
if data_root is None:
data_root = join(dirname(__file__), "data", "cmu_arctic")
checkpoint_path = args["<checkpoint>"]
dst_dir = args["<dst_dir>"]
length = int(args["--length"])
# Note that speaker-id is used for filtering out unrelated-speaker from
# multi-speaker dataset.
speaker_id = args["--speaker-id"]
speaker_id = int(speaker_id) if speaker_id is not None else None
initial_value = args["--initial-value"]
initial_value = None if initial_value is None else float(initial_value)
file_name_suffix = args["--file-name-suffix"]
output_html = args["--output-html"]
num_utterances = int(args["--num-utterances"])
preset = args["--preset"]
# Load preset if specified
if preset is not None:
with open(preset) as f:
hparams.parse_json(f.read())
# Override hyper parameters
hparams.parse(args["--hparams"])
assert hparams.name == "wavenet"
from train import build_model, get_data_loaders
from synthesis import wavegen
# Data
# Use exactly same testset used in training script
# disable shuffle for convenience
test_data_loader = get_data_loaders(data_root, speaker_id, test_shuffle=False)["test"]
test_dataset = test_data_loader.dataset
# Model
model = build_model().to(device)
# Load checkpoint
print("Load checkpoint from {}".format(checkpoint_path))
if use_cuda:
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint["state_dict"])
checkpoint_name = splitext(basename(checkpoint_path))[0]
os.makedirs(dst_dir, exist_ok=True)
dst_dir_name = basename(os.path.normpath(dst_dir))
generated_utterances = {}
for idx, (x, c, g) in enumerate(test_dataset):
target_audio_path = test_dataset.X.collected_files[idx][0]
if g is None and num_utterances > 0 and idx > num_utterances:
break
if num_utterances > 0 and g is not None:
try:
generated_utterances[g] += 1
if generated_utterances[g] > num_utterances:
continue
except KeyError:
generated_utterances[g] = 1
if output_html:
def _tqdm(x): return x
else:
_tqdm = tqdm
print("Target audio is {}".format(target_audio_path))
if c is not None:
print("Local conditioned by {}".format(test_dataset.Mel.collected_files[idx][0]))
if g is not None:
print("Global conditioned by speaker id {}".format(g))
# Paths
if g is None:
dst_wav_path = join(dst_dir, "{}_{}{}_predicted.wav".format(
idx, checkpoint_name, file_name_suffix))
target_wav_path = join(dst_dir, "{}_{}{}_target.wav".format(
idx, checkpoint_name, file_name_suffix))
else:
dst_wav_path = join(dst_dir, "speaker{}_{}_{}{}_predicted.wav".format(
g, idx, checkpoint_name, file_name_suffix))
target_wav_path = join(dst_dir, "speaker{}_{}_{}{}_target.wav".format(
g, idx, checkpoint_name, file_name_suffix))
# Generate
waveform = wavegen(model, length, c=c, g=g, initial_value=initial_value,
fast=True, tqdm=_tqdm)
# save
librosa.output.write_wav(dst_wav_path, waveform, sr=hparams.sample_rate)
if is_mulaw_quantize(hparams.input_type):
x = P.inv_mulaw_quantize(x, hparams.quantize_channels)
elif is_mulaw(hparams.input_type):
x = P.inv_mulaw(x, hparams.quantize_channels)
librosa.output.write_wav(target_wav_path, x, sr=hparams.sample_rate)
# log
if output_html:
print("""
<audio controls="controls" >
<source src="/{}/audio/{}/{}" autoplay/>
Your browser does not support the audio element.
</audio>
""".format(hparams.name, dst_dir_name, basename(dst_wav_path)))
print("Finished! Check out {} for generated audio samples.".format(dst_dir))
sys.exit(0)