Skip to content

Latest commit

 

History

History
86 lines (81 loc) · 2.5 KB

README.md

File metadata and controls

86 lines (81 loc) · 2.5 KB

Prepare SceneNN-MV Dataset

Step1: The processed SceneNN data can be downloaded from the repo of Online3D. Run cat SceneNN.tar.* > SceneNN.tar to merge the files. Then unzip 'SceneNN.tar' to get 'SceneNN' folder.

Link 'SceneNN' folder to this directory, namely ESAM/data/scenenn-mv. You should get the following directory structure:

scenenn-mv
├── SceneNN
│   ├── 005
│   │   ├── depth
│   │   ├── image
│   │   ├── ins
│   │   ├── label
│   │   ├── point
│   │   ├── pose
│   │   ├── 005.ply
│   │   ├── 005.xml
│   │   └── timestamp.txt
│   ├── 011
│   └── ...
├── load_scannet_data.py
├── load_scenenn_mv_data.py
├── README.md
├── scannetv2-labels.combined.tsv
└── scannet_utils.py

Step2: Run the following commands:

python load_scenenn_mv_data.py

or use FastSAM instead of SAM by running:

python load_scenenn_mv_data_fast.py

If you use the FastSAM version, please rename this folder from scenenn-mv to scenenn-mv_fast.

Then you will get several new folders, including instance_mask, points, semantic_mask, super_points.

Step3: Go back to the root directory of ESAM, and generate .pkl file by running:

python tools/create_data.py scenenn_mv --root-path ./data/scenenn-mv --out-dir ./data/scenenn-mv --extra-tag scenenn_mv

Final folder structure:

scenenn-mv
├── SceneNN
│   ├── 005
│   │   ├── depth
│   │   ├── image
│   │   ├── ins
│   │   ├── label
│   │   ├── point
│   │   ├── pose
│   │   ├── 005.ply
│   │   ├── 005.xml
│   │   └── timestamp.txt
│   ├── 011
│   └── ...
├── instance_mask
│   ├── xxx
│   │   ├── x.bin
│   │   └── ...
│   └── ...
├── points
│   ├── xxx
│   │   ├── x.bin
│   │   └── ...
│   └── ...
├── semantic_mask
│   ├── xxx
│   │   ├── x.bin
│   │   └── ...
│   └── ...
├── super_points
│   ├── xxx
│   │   ├── x.bin
│   │   └── ...
│   └── ...
├── load_scannet_data.py
├── load_scenenn_mv_data.py
├── scenenn_mv_oneformer3d_infos_val.pkl
├── README.md
├── scannetv2-labels.combined.tsv
└── scannet_utils.py