The processed SceneNN data can be downloaded from HERE.Run cat SceneNN.tar.* > SceneNN.tar
to merge the files. Then skip to Step 4.
Step 1. Download SceneNN oni
data from HERE. Then download .ply
data, .xml
data and trajectory.log
data from HERE.
The data of each scene is structured as follows:
SceneNN
├── 005
│ ├── 005.ply /* the reconstructed triangle mesh */
│ ├── 005.xml /* the annotation */
├── trajectory
│ ├── 005_trajectory.log /* camera pose (local to world) */
└── 005.oni /* the raw RGBD video */
For simplicity and representativeness, we select 12 highly comprehensive and object-rich scenes , namely ['015', '005', '030', '054', '322', '263', '243', '080', '089', '093', '096', '011'].
Step 2.
Process oni
data by using the tool in the playback folder HERE.
Step 3. Process online data by:
python data_process.py
Step 4. Generate .pkl files by:
python tools/create_data.py scenenn --root-path ./data/scenenn-mv --out-dir ./data/scenenn-mv --extra-tag scenenn_mv
Final folder structure:
scenenn-mv
├── data_process.py
├── quality_check.py
├── scannet_utils.py
├── README.md
├── scannetv2-labels.combined.tsv
├── 005.oni
├── trajectory
│ ├── 005_trajectory.log
│ ├── 011_trajectory.log
├── 005
│ ├── depth
│ │ ├── depthxxxxx.png
│ ├── image
│ │ ├── imagexxxxx.png
│ ├── label
│ │ ├── xxxxx.npy
│ ├── point
│ │ ├── xxxxx.npy
│ ├── pose
│ | ├── xxxxx.npy
| ├── 005.ply
| ├── 005.xml
| ├── timestamp.txt
├── SceneNN_validate.pkl
└── scenenn_mv_infos_val.pkl