-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathccf_2020_qa_match_pet.py
264 lines (203 loc) · 7.92 KB
/
ccf_2020_qa_match_pet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# -*- coding: utf-8 -*-
# @Date : 2020/11/4
# @Author : mingming.xu
# @Email : xv44586@gmail.com
# @File : ccf_2020_qa_match_pet.py
"""
Pattern-Exploiting Training(PET): 增加pattern,将任务转换为MLM任务。
线上f1: 0.761
tips:
切换模型时,修改对应config_path/checkpoint_path/dict_path路径以及build_transformer_model 内的参数
"""
import os
import numpy as np
import json
from tqdm import tqdm
import numpy as np
from toolkit4nlp.backend import keras, K
from toolkit4nlp.tokenizers import Tokenizer, load_vocab
from toolkit4nlp.models import build_transformer_model, Model
from toolkit4nlp.optimizers import *
from toolkit4nlp.utils import pad_sequences, DataGenerator
from toolkit4nlp.layers import *
path = '/home/mingming.xu/datasets/NLP/ccf_qa_match/'
p = os.path.join(path, 'train', 'train.query.tsv')
def load_data(train_test='train'):
D = {}
with open(os.path.join(path, train_test, train_test + '.query.tsv')) as f:
for l in f:
span = l.strip().split('\t')
D[span[0]] = {'query': span[1], 'reply': []}
with open(os.path.join(path, train_test, train_test + '.reply.tsv')) as f:
for l in f:
span = l.strip().split('\t')
if len(span) == 4:
q_id, r_id, r, label = span
label = int(label)
else:
label = None
q_id, r_id, r = span
D[q_id]['reply'].append([r_id, r, label])
d = []
for k, v in D.items():
q_id = k
q = v['query']
reply = v['reply']
for i, r in enumerate(reply):
r_id, rc, label = r
d.append([q_id, q, r_id, rc, label])
return d
train_data = load_data('train')
test_data = load_data('test')
num_classes = 32
maxlen = 128
batch_size = 8
# BERT base
config_path = '/home/mingming.xu/pretrain/NLP/nezha_base_wwm/bert_config.json'
checkpoint_path = '/home/mingming.xu/pretrain/NLP/nezha_base_wwm/model.ckpt'
dict_path = '/home/mingming.xu/pretrain/NLP/nezha_base_wwm/vocab.txt'
# tokenizer
tokenizer = Tokenizer(dict_path, do_lower_case=True)
# pattern
pattern = '直接回答问题:'
mask_idx = [1]
id2label = {
0: '间',
1: '直'
}
label2id = {v: k for k, v in id2label.items()}
labels = list(id2label.values())
def random_masking(token_ids):
"""对输入进行随机mask
"""
rands = np.random.random(len(token_ids))
source, target = [], []
for r, t in zip(rands, token_ids):
if r < 0.15 * 0.8:
source.append(tokenizer._token_mask_id)
target.append(t)
elif r < 0.15 * 0.9:
source.append(t)
target.append(t)
elif r < 0.15:
source.append(np.random.choice(tokenizer._vocab_size - 1) + 1)
target.append(t)
else:
source.append(t)
target.append(0)
return source, target
class data_generator(DataGenerator):
def __init__(self, prefix=False, *args, **kwargs):
super(data_generator, self).__init__(*args, **kwargs)
self.prefix = prefix
def __iter__(self, shuffle=False):
batch_token_ids, batch_segment_ids, batch_target_ids = [], [], []
for is_end, (q_id, q, r_id, r, label) in self.get_sample(shuffle):
label = int(label) if label is not None else None
if label is not None or self.prefix:
q = pattern + q
token_ids, segment_ids = tokenizer.encode(q, r, maxlen=maxlen)
if shuffle:
source_tokens, target_tokens = random_masking(token_ids)
else:
source_tokens, target_tokens = token_ids[:], token_ids[:]
# mask label
if label is not None:
label_ids = tokenizer.encode(id2label[label])[0][1:-1]
for m, lb in zip(mask_idx, label_ids):
source_tokens[m] = tokenizer._token_mask_id
target_tokens[m] = lb
elif self.prefix:
for i in mask_idx:
source_tokens[i] = tokenizer._token_mask_id
batch_token_ids.append(source_tokens)
batch_segment_ids.append(segment_ids)
batch_target_ids.append(target_tokens)
if is_end or len(batch_token_ids) == self.batch_size:
batch_token_ids = pad_sequences(batch_token_ids)
batch_segment_ids = pad_sequences(batch_segment_ids)
batch_target_ids = pad_sequences(batch_target_ids)
yield [batch_token_ids, batch_segment_ids, batch_target_ids], None
batch_token_ids, batch_segment_ids, batch_target_ids = [], [], []
# shuffle
np.random.shuffle(train_data)
n = int(len(train_data) * 0.8)
train_generator = data_generator(data=train_data[: n] + test_data, batch_size=batch_size)
valid_generator = data_generator(data=train_data[n:], batch_size=batch_size)
test_generator = data_generator(data=test_data, batch_size=batch_size, prefix=True)
class CrossEntropy(Loss):
"""交叉熵作为loss,并mask掉输入部分
"""
def compute_loss(self, inputs, mask=None):
y_true, y_pred = inputs
y_mask = K.cast(K.not_equal(y_true, 0), K.floatx())
accuracy = keras.metrics.sparse_categorical_accuracy(y_true, y_pred)
accuracy = K.sum(accuracy * y_mask) / K.sum(y_mask)
self.add_metric(accuracy, name='accuracy')
loss = K.sparse_categorical_crossentropy(y_true, y_pred)
loss = K.sum(loss * y_mask) / K.sum(y_mask)
return loss
model = build_transformer_model(config_path=config_path,
checkpoint_path=checkpoint_path,
with_mlm=True,
# model='bert', # 加载bert/Roberta/ernie
model='nezha'
)
target_in = Input(shape=(None,))
output = CrossEntropy(1)([target_in, model.output])
train_model = Model(model.inputs + [target_in], output)
AdamW = extend_with_weight_decay(Adam)
AdamWG = extend_with_gradient_accumulation(AdamW)
opt = AdamWG(learning_rate=1e-5, exclude_from_weight_decay=['Norm', 'bias'], grad_accum_steps=4)
train_model.compile(opt)
train_model.summary()
label_ids = np.array([tokenizer.encode(l)[0][1:-1] for l in labels])
def predict(x):
if len(x) == 3:
x = x[:2]
y_pred = model.predict(x)[:, mask_idx]
y_pred = y_pred[:, 0, label_ids[:, 0]]
y_pred = y_pred.argmax(axis=1)
return y_pred
def evaluate(data):
P, R, TP = 0., 0., 0.
for d, _ in tqdm(data):
x_true, y_true = d[:2], d[2]
y_pred = predict(x_true)
y_true = np.array([labels.index(tokenizer.decode(y)) for y in y_true[:, mask_idx]])
# print(y_true, y_pred)
R += y_pred.sum()
P += y_true.sum()
TP += ((y_pred + y_true) > 1).sum()
print(P, R, TP)
pre = TP / R
rec = TP / P
return 2 * (pre * rec) / (pre + rec)
class Evaluator(keras.callbacks.Callback):
def __init__(self):
self.best_acc = 0.
def on_epoch_end(self, epoch, logs=None):
acc = evaluate(valid_generator)
if acc > self.best_acc:
self.best_acc = acc
self.model.save_weights('best_pet_model.weights')
print('acc :{}, best acc:{}'.format(acc, self.best_acc))
def write_to_file(path):
preds = []
for x, _ in tqdm(test_generator):
pred = predict(x)
preds.extend(pred)
ret = []
for data, p in zip(test_data, preds):
ret.append([data[0], data[2], str(p)])
with open(path, 'w') as f:
for r in ret:
f.write('\t'.join(r) + '\n')
if __name__ == '__main__':
evaluator = Evaluator()
train_model.fit_generator(train_generator.generator(),
steps_per_epoch=len(train_generator),
epochs=10,
callbacks=[evaluator])
train_model.load_weights('best_pet_model.weights')
write_to_file('submission.tsv')