-
Notifications
You must be signed in to change notification settings - Fork 3
/
focal_loss.py
50 lines (40 loc) · 1.84 KB
/
focal_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torch.autograd import Variable
class FocalLoss(nn.Module):
def __init__(self, gamma=0, alpha=None, size_average=True):
super(FocalLoss, self).__init__()
self.gamma = gamma
self.alpha = alpha
if isinstance(alpha,(float,int)): self.alpha = torch.Tensor([alpha,1-alpha])
if isinstance(alpha,list): self.alpha = torch.Tensor(alpha)
self.size_average = size_average
def forward(self, input, target):
if input.dim()>2:
input = input.view(input.size(0),input.size(1),-1) # N,C,H,W => N,C,H*W
input = input.transpose(1,2) # N,C,H*W => N,H*W,C
input = input.contiguous().view(-1,input.size(2)) # N,H*W,C => N*H*W,C
# Ignore background pixels
target_lv = target[:, 0, :, :]
target_myo = target[:,1,:,:]
target_rv = target[:,2,:,:]
target_index = target_myo*1 + target_rv*2
target_binary_back = target_lv + target_myo + target_rv
target_binary_back = target_binary_back.view(-1)
num_objects = torch.sum(target_binary_back)
target_index = target_index.view(-1,1).long() # N*H*W*C
logpt = F.log_softmax(input)
logpt = logpt.gather(1,target_index)
logpt = logpt.view(-1)
logpt = logpt * target_binary_back
pt = Variable(logpt.data.exp())
if self.alpha is not None:
if self.alpha.type()!=input.data.type():
self.alpha = self.alpha.type_as(input.data)
at = self.alpha.gather(0,target.data.view(-1))
logpt = logpt * Variable(at)
loss = -1 * (1-pt)**self.gamma * logpt
if self.size_average: return loss.sum() / (num_objects.data+1)
else: return loss.sum()