-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsensors_DQN2.py
469 lines (395 loc) · 18.8 KB
/
sensors_DQN2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
from typing import List, Any, Union
import pyodbc # to read table from sql
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
import time as time
import sys
import pylab
import random
import numpy as np
from collections import deque
from keras.layers import Dense
from keras.models import Sequential
# Guide Notes:
# This is a DQN(Deep Q Network) agent which consists of a neural net and a target net.
# each record of input data is like:
# if 7 sensors are input:
# normalizedTime | V21 | V22 | V23 | S137 | S138 | S139 | S140 | B5
# and if 86 sensors are input;
# normalizedTime |... 86 sensors ...| B5
# where normalizedTime is normal time of event and other columns are sensor values in that timestamp
# and last column (i.e B5 ) is label(i.e it's value must be predicted by our algorithm)
# model predicts the action index
from tensorflow import keras
EPISODES = 1000 # gradually change it to 1000. must be large enough to be trained
name = "dqn_in7_out1_81.h5"
# name = "dqn_in86_out1_81.h5"
# SaveLocation = "savedModel2/dqn_in86_out1_81.h5"
SaveLocation = "savedModel2/dqn_in7_out1_81.h5"
train_start_column = 1 # for train86 set 4 for train7 set 1
test_start_column = 3 # for train86 set for test7 set 3
train_stop_reward = 15
np.random.seed(10)
# on_train = True
on_train = False
# DQN Agent
# has a 2 layer Neural Network to approximate Q function and replay memory & target Q network
class DQNAgent:
def __init__(self, state_size, action_size: int, epsilon=1.0):
self.state_size = state_size
self.action_size = action_size # is 7 for 3 actuators
self.memory = deque(maxlen=2000) # replay memory
self.gamma = 0.7 # discount rate 0.9 0.1 0.001
self.epsilon = epsilon # exploration rate
self.epsilon_min = 0.001
self.epsilon_decay = 0.99
self.learning_rate = 0.01 # 0.01 - 0.00001
self.batch_size = 64
self.train_start = 1000
# main and target model
self.model = self._build_model()
self.target_model = self._build_model()
# initialize target model
self.update_target_model()
self.update_frequency = 50
self.load_model = False
if self.load_model:
self.model.load_weights(SaveLocation)
def _build_model(self):
# Neural Net for Deep-Q learning Model
model = Sequential()
model.add(Dense(5, input_dim=self.state_size, activation='relu'))
model.add(Dense(self.action_size, activation='softmax'))
# model.summary()
model.compile(
loss='mse',
optimizer=tf.keras.optimizers.Adam(learning_rate=self.learning_rate),
metrics=[
# tf.metrics.SparseCategoricalAccuracy()
# tf.metrics.CategoricalAccuracy(),
],
)
return model
# after some time interval update the target model to be same with model
def update_target_model(self):
self.target_model.set_weights(self.model.get_weights())
def memorize(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
# returns the action index.
def act(self, state):
if np.random.rand() <= self.epsilon:
print(".")
return np.random.randint(0, self.action_size) # randrange is from [start - last)
act_values = self.model.predict(state)
# act_values is ndarray (1,7) like: [[0,0,0,0,0,0,0,0]]
# print("np.argmax(act_values[0]): ", np.argmax(act_values[0])) # argmax gives index of max value
return np.argmax(act_values[0]) # returns action index
# this is the train part which picks samples randomly from replay memory (with batch_size)
def replay(self):
if len(self.memory) < self.train_start:
return
batch_size = min(self.batch_size, len(self.memory))
mini_batch = random.sample(self.memory, batch_size)
update_input = np.zeros((batch_size, self.state_size))
update_target = np.zeros((batch_size, self.state_size))
action, reward, done = [], [], []
for i in range(self.batch_size):
update_input[i] = mini_batch[i][0] # s
action.append(mini_batch[i][1]) # a
reward.append(mini_batch[i][2]) # r
update_target[i] = mini_batch[i][3] # s'
done.append(mini_batch[i][4])
target = self.model.predict(update_input) # Q(s') from prediction net
target_val = self.target_model.predict(update_target) # Q(s') from target net
for i in range(self.batch_size):
# Q Learning: get maximum Q value at s' from target model
if done[i]:
target[i][action[i]] = reward[i]
else:
target[i][action[i]] = reward[i] + self.gamma * (
np.amax(target_val[i]))
# fit the model to update it's nn weights
result = self.model.fit(update_input, target, batch_size=self.batch_size,
epochs=1, verbose=0)
def load(self, path_weights):
self.model.load_weights(path_weights)
def save(self, path_weights):
self.model.save_weights(path_weights)
def setEpsilon(self, eps):
self.epsilon = eps
class MySmartHome:
def __init__(self):
self.current_record_index = 0
self.action_space = [[0], [1]]
# states_labels is the whole records and columns
self.states_labels: pd.DataFrame = self._get_sensors_data_from_sql()
self.states_labels_test: pd.DataFrame = self._get_test_data_from_sql()
actuators_count = 1
self.states_labels: pd.DataFrame = self.states_labels.iloc[0:, train_start_column:] # select from second column
self.all_states: pd.DataFrame = self.states_labels.iloc[:, :-actuators_count] # igonore last 3 columns
self.all_labels: pd.DataFrame = self.states_labels.iloc[:, -actuators_count:] # last 3 columns are labels
self.states_labels = self.states_labels.apply(pd.to_numeric)
self.all_states_test: pd.DataFrame = self.states_labels_test.iloc[:,
test_start_column:-actuators_count] # = self.x_test
self.all_labels_test: pd.DataFrame = self.states_labels_test.iloc[:, -actuators_count:] # = self.y_test
# in case of using 7 sensors, state_size is 8(7 sensor and a timestamp)
# ignore last 3 columns for state since they are labels.
self.state_size = self.all_states.columns.__len__() # might be 7-8 86-87
# print("test 4s:", self.all_states_test.head(10))
# print("test 4l:", self.all_labels_test.head(10))
def _get_test_data_from_sql(self) -> pd.DataFrame:
server = '.'
database = 'Your Database Name'
username = 'Database username'
password = 'Database password'
cnxn = pyodbc.connect(
'DRIVER={SQL Server};SERVER=' + server + ';DATABASE=' + database + ';UID=' + username + ';PWD=' + password)
cursor = cnxn.cursor()
# get test dataset for testing algorithm in case of 7 inputs
# query = "sp_getRandomTests86"
query = "sp_getRandomTests7" # this is used
df = pd.read_sql(query, cnxn)
# data initialization done
# print("Test Data received.first record is:")
# print(df.head(1))
return df
# open a connection to sql server. data had been pre proccessed in sql and we are getting data via stored procedures.
def _get_sensors_data_from_sql(self) -> pd.DataFrame:
server = '.'
database = 'Your Database Name'
username = 'Database username'
password = 'Database password'
cnxn = pyodbc.connect(
'DRIVER={SQL Server};SERVER=' + server + ';DATABASE=' + database + ';UID=' + username + ';PWD=' + password)
cursor = cnxn.cursor()
query = "SELECT * FROM tb2_7train;" # train dataset used to train in case of 7 sensors as input
# query = "sp_getRandomRows;" # train dataset used to train in case of 86 sensors as input
df = pd.read_sql(query, cnxn)
return df
# return the first record of train
def reset(self, test=False):
self.current_record_index = 0
if test:
return self.all_states_test.iloc[0, :] # row 0 and all columns
return self.all_states.iloc[0, :] # row 0 and all columns
###
# action is the predicted label's index
# do the action and then
# return next_state, reward, done, info
def step(self, actionIndex, test=False):
done = False
# Reward
rewardd: int = -1
# print("%%%%%%%% step method %%%%%%%%%%%%%")
# print("actionIndex is:", actionIndex)
# In this problem, doing action does not change the dataset
# It just compares the predicted action and real actions and gives a reward.
self.current_record_index += 1
# if isDone, so we are in the last record
if self.isDone(self.current_record_index, test):
# rewardd = 0
done = True
if test:
current_record: pd.Series = self.all_states_test.iloc[self.current_record_index - 1, :]
actual_labels: pd.Series = self.all_labels_test.iloc[self.current_record_index - 1, :]
actual_labels_list = actual_labels.tolist()
else:
current_record: pd.Series = self.all_states.iloc[self.current_record_index - 1, :]
actual_labels: pd.Series = self.all_labels.iloc[self.current_record_index - 1, :]
actual_labels_list = actual_labels.tolist()
predicted_actions = self.action_space[actionIndex]
y_true_index = self.action_space.index(actual_labels_list)
if actual_labels_list == predicted_actions:
rewardd = 1
return current_record, rewardd, done, y_true_index
# print(" real labels:", actual_labels_list)
# print("predicted labels:", predicted_actions)
# print(" reward: ", rewardd)
# calculate reward:------------------
if test:
current_record: pd.Series = self.all_states_test.iloc[self.current_record_index - 1, :]
actual_labels: pd.Series = self.all_labels_test.iloc[self.current_record_index - 1, :]
actual_labels_list = actual_labels.tolist()
else:
current_record: pd.Series = self.all_states.iloc[self.current_record_index - 1, :]
actual_labels: pd.Series = self.all_labels.iloc[self.current_record_index - 1, :]
actual_labels_list = actual_labels.tolist()
predicted_actions = self.action_space[actionIndex]
y_true_index = self.action_space.index(actual_labels_list)
if actual_labels_list == predicted_actions:
rewardd = 1
# -------------------------------------
return current_record, rewardd, done, y_true_index
def isDone(self, current_record_index, test=False):
# 1>1 is false
if test:
if current_record_index > self.all_states_test.__len__() - 1:
return True
else:
if current_record_index > self.all_states.__len__() - 1:
return True
def test_agent(model: DQNAgent, env: MySmartHome, n_episodes=20, test=True) -> [int, List, List]:
start_time_test = time.time()
predicted_labels_index: List = []
y_true_index_labels_index = []
done = False
episode_reward = 0
state = env.reset(test=True)
state = np.reshape(state.values, [1, state_size])
while not done:
action = model.act(state)
state, reward, done, y_true_index = env.step(action, test=test)
state = np.reshape(state.values, [1, state_size])
episode_reward += reward
# store predicted labels to use for confusion matrix at the end
predicted_labels_index.append(action)
y_true_index_labels_index.append(y_true_index)
end_time_test = time.time()
return [episode_reward, predicted_labels_index, y_true_index_labels_index, start_time_test, end_time_test]
def train_agent(env: MySmartHome, agent: DQNAgent) -> List[int]:
reward_per_episode, episodes = [], []
for e in range(1, EPISODES + 1): # (i,j) start from i to j-1
episode_reward = 0 # sum the score of episode
# state type is Series
state = env.reset() # go to first record of dataset
done = False
state = np.reshape(state.values, [1, state_size])
# while not reached the terminal state:
while not done:
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
# reward = reward if not done else -10
reward = reward
# store episode reward
episode_reward += reward
# print("--------------next_state.shape---------------")
# before reshape, shape is (8,)
next_state = np.reshape(next_state.values, [1, state_size])
# print(next_state.shape) # is: (1,8) like: [['timestamp',0,0,0,0,0,0,0]]
agent.memorize(state, action, reward, next_state, done)
agent.replay()
state = next_state
if done:
# every episode update the target model to be same with model
if e % agent.update_frequency == 0:
agent.update_target_model()
print("episode: {}/{} , epsilon: {:.3} ,memory length:{}, rewards:{}"
.format(e, EPISODES, agent.epsilon, len(agent.memory), episode_reward))
# every episode, plot the play time
# episode_reward = score if score == 500 else score + 100
reward_per_episode.append(episode_reward)
episodes.append(e)
pylab.plot(episodes, reward_per_episode, '-c')
pylab.xlabel('Episode')
pylab.ylabel('Reward')
pylab.title('Rewards per episode')
pylab.savefig("save_graph2/dqn2_graph.png")
# if the mean of scores of last 10 episode is bigger than 20
# stop training
if np.mean(reward_per_episode[-min(10, len(reward_per_episode)):]) >= train_stop_reward:
print(f"episode {e}, agent saved.EarlyExit")
agent.save(SaveLocation)
sys.exit()
if e % 2 == 0:
print(f"episode {e}, agent saved.")
agent.save(SaveLocation)
return reward_per_episode
def get_test_results() -> [int, List, List]:
predictedd_labels_index: List
y_truee_index_labels_index: List
newAgent = DQNAgent(
state_size=state_size,
action_size=action_size,
epsilon=0)
newAgent.load(SaveLocation)
one_episode_reward, \
predictedd_labels_index, \
y_truee_index_labels_index, start_time_test, end_time_test = test_agent(model=newAgent, env=env, n_episodes=20,
test=True)
return [one_episode_reward, predictedd_labels_index, y_truee_index_labels_index, start_time_test, end_time_test]
if __name__ == "__main__":
i = 1
# for i in range(2, 3): # runs from 1 to 10 end is not included
# print(f"test {i}")
env = MySmartHome()
state_size = env.state_size # in case of 7 sensors, is 7 plus time if it is.
action_size: int = env.action_space.__len__() # is 8
print("action_size: ", action_size)
# todo
agent = DQNAgent(state_size, action_size)
# # watch untrained agent
# mean_rewards_per_episode = test_agent(model=agent, env=env, n_episodes=20, test=True)
# # test trained agent
# print("Watch untrained agent ")
# print(f"Average Test Reward:{mean_rewards_per_episode}")
# capture duration of algorithm
start_time_train = time.time()
if on_train:
reward_per_episode = train_agent(env, agent)
end_time_train = time.time()
# # Showing Results -------------------------------------------------------
# plt.plot(reward_per_episode)
# plt.title(f"Rewards per Episode {name}")
# plt.show()
predicted_labels_index: List
y_true_index_labels_index: List
start_time_saved_agent = 0
end_time_saved_agent = 0
# todo
print("Started Testing...")
one_episode_reward, predicted_labels_index, y_true_index_labels_index, \
start_time_saved_agent, end_time_saved_agent = get_test_results()
# test Saved agent
print("___________see Saved agent______________________ ")
# print(f"Average Trained Reward:{mean_rewards_per_episode}")
# todo
print(f"one_episode_reward Saved agent:{one_episode_reward}")
print("________________________________________________ ")
print("*****************************************")
t1 = (end_time_train - start_time_train) * 1000
print(f" train time:{t1}ms or{t1 / 1000}s or {t1 / 60000}minute ")
t2 = (end_time_saved_agent - start_time_saved_agent) * 1000
print(f" saved agent test time:{t2}ms or{t2 / 1000}s or {t2 / 60000}minute ")
from sklearn.metrics import classification_report, confusion_matrix
y_len = y_true_index_labels_index.__len__()
yhat_len = predicted_labels_index.__len__()
print("confusion_matrix:")
print(confusion_matrix(
np.array(y_true_index_labels_index).reshape(y_len, ),
np.array(predicted_labels_index).reshape(yhat_len, ),
# labels=[0, 1, 2, 3, 4, 5, 6]
# labels=[0, 1, 2, 3, 4, 5]
labels=[0, 1]
)
)
print("classification_report:")
print(classification_report(
np.array(y_true_index_labels_index).reshape(y_len, ),
np.array(predicted_labels_index).reshape(yhat_len, ),
)
)
from sklearn.metrics import accuracy_score
print("accuracy_score:")
print(accuracy_score(np.array(y_true_index_labels_index).reshape(y_len, ),
np.array(predicted_labels_index).reshape(yhat_len, ), ))
import seaborn as sns
T5_lables = ['predicted:0', 'predicted:1']
T5_lablesY = ['True:0', 'True:1']
# T5_lables = [0, 1, 2, 3, 4, 5, 6]
ax = plt.subplot()
# labels, title and ticks
ax.xaxis.set_ticklabels(T5_lables)
ax.yaxis.set_ticklabels(T5_lablesY)
ax.set_xlabel('Predicted labels')
ax.set_ylabel('True labels')
ax.set_title(f'Confusion Matrix {name} test{i}')
cm = confusion_matrix(y_true_index_labels_index, predicted_labels_index)
sns.heatmap(cm, annot=True, fmt='g', ax=ax, xticklabels=T5_lables,
yticklabels=T5_lablesY) # annot=True to annotate cells, ftm='g' to disable scientific notation
plt.show()
# The confusion matrix takes a vector of labels (not the one-hot encoding). You should run
#
# confusion_matrix(y_test.values.argmax(axis=1), predictions.argmax(axis=1))