-
Notifications
You must be signed in to change notification settings - Fork 2
/
random_forest.py
157 lines (133 loc) · 5.96 KB
/
random_forest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
import os
import json
import sys
import optuna
import time
import numpy as np
from sklearn.metrics import roc_auc_score
import os.path
import lib
from lib.data import build_dataset
from lib.data import standardize_labels
n_jobs = 64
def main(dataset_name):
with open(f'data/{dataset_name}/info.json', 'rt') as fin:
info_d = (json.load(fin))
if info_d['task_type'] == 'binclass':
target_policy = 'binclass'
y_policy = None
module = RandomForestClassifier
else:
target_policy = 'regression'
y_policy = "standard"
module = RandomForestRegressor
if not(os.path.exists(f'data/{dataset_name}/X_cat.npy')):
cat_policy = None
else:
cat_policy = 'one-hot'
dataset = build_dataset(path=f':data/{dataset_name}', cat_policy=cat_policy, num_policy='noisy-quantile', cache=True, seed=0)
if (dataset.n_bin_features != 0):
train_x = np.concatenate((dataset['x_num']['train'], dataset['x_bin']['train']), axis=1)
val_x = np.concatenate((dataset['x_num']['val'], dataset['x_bin']['val']), axis=1)
test_x = np.concatenate((dataset['x_num']['test'], dataset['x_bin']['test']), axis=1)
else:
train_x = dataset['x_num']['train']
val_x = dataset['x_num']['val']
test_x = dataset['x_num']['test']
if cat_policy == 'one-hot':
train_x = np.concatenate((train_x, dataset['x_cat']['train']), axis=1)
val_x = np.concatenate((val_x, dataset['x_cat']['val']), axis=1)
test_x = np.concatenate((test_x, dataset['x_cat']['test']), axis=1)
if dataset.task.is_regression:
dataset.data['y'], regression_label_stats = standardize_labels(
dataset.data['y']
)
train_y = dataset['y']['train']
val_y = dataset['y']['val']
test_y = dataset['y']['test']
def objective(trial):
# Number of trees in random forest
n_estimators = 1000
# Number of features to consider at every split
max_features = trial.suggest_categorical(name="max_features", choices=['log2', 'sqrt', 1.0, 0.5, 0.25])
# Maximum number of levels in tree
max_depth = trial.suggest_int(name="max_depth", low=10, high=110, step=20)
# Minimum number of samples required to split a node
min_samples_split = trial.suggest_int(name="min_samples_split", low=2, high=10, step=2)
# Minimum number of samples required at each leaf node
min_samples_leaf = trial.suggest_int(name="min_samples_leaf", low=1, high=4, step=1)
params = {
"n_estimators": n_estimators,
"max_features": max_features,
"max_depth": max_depth,
"min_samples_split": min_samples_split,
"min_samples_leaf": min_samples_leaf
}
model = module(random_state=0, **params, n_jobs=n_jobs)
model.fit(train_x, train_y)
#cv_score = cross_val_score(model, X_train, y_train, n_jobs=4, cv=5)
#mean_cv_accuracy = cv_score.mean()
if target_policy == 'regression':
y_pred = model.predict(val_x)
else:
y_pred = model.predict_proba(val_x)[:, 1]
if target_policy == 'regression':
score = ((y_pred - val_y)**2).mean()**0.5
else:
score = -roc_auc_score(val_y, y_pred)
return score
study = optuna.create_study()
study.optimize(objective, n_trials=10)
dd = study.best_params
dd['n_estimators'] = 2000
tt = time.time()
os.mkdir(f'exp/random_forest/{dataset_name}')
os.mkdir(f'exp/random_forest/{dataset_name}/0-evaluation')
for seed in range(5):
preds = dict()
best_model = module(random_state=seed, **dd, n_jobs=n_jobs)
best_model.fit(train_x, train_y)
if target_policy == "regression":
train_y_pred = best_model.predict(train_x)
val_y_pred = best_model.predict(val_x)
y_pred = best_model.predict(test_x)
else:
train_y_pred = best_model.predict_proba(train_x)[:, 1]
val_y_pred = best_model.predict_proba(val_x)[:, 1]
y_pred = best_model.predict_proba(test_x)[:, 1]
if target_policy == 'regression':
val_score = ((val_y_pred - val_y)**2).mean()**0.5 * regression_label_stats.std
else:
val_score = -roc_auc_score(val_y, val_y_pred)
if target_policy == 'regression':
test_score = ((y_pred - test_y)**2).mean()**0.5 * regression_label_stats.std
else:
test_score = -roc_auc_score(test_y, y_pred)
j = dict()
j['config'] = dict()
j['config']['model'] = dd
j['config']['data'] = dict()
j['config']['data']['seed'] = seed
j['config']['data']['path'] = f':data/{dataset_name}'
j['metrics'] = dict()
j['metrics']['val'] = dict()
j['metrics']['test'] = dict()
j['metrics']['val']['score'] = -val_score
j['metrics']['test']['score'] = -test_score
j['time'] = time.time() - tt
tt = time.time()
os.mkdir(f'exp/random_forest/{dataset_name}/0-evaluation/{seed}')
if target_policy == 'regression':
np.savez(f'exp/random_forest/{dataset_name}/0-evaluation/{seed}/predictions.npz',
test=y_pred * regression_label_stats.std + regression_label_stats.mean,
val=val_y_pred * regression_label_stats.std + regression_label_stats.mean,
train=train_y_pred * regression_label_stats.std + regression_label_stats.mean)
else:
np.savez(f'exp/random_forest/{dataset_name}/0-evaluation/{seed}/predictions.npz',
test=y_pred, val=val_y_pred, train=train_y_pred)
with open(f'exp/random_forest/{dataset_name}/0-evaluation/{seed}/report.json', 'wt') as f:
json.dump(j, f, indent=4)
output = lib.get_path(f'exp/random_forest/{dataset_name}/0-evaluation')
lib.finish(output, j)
main(sys.argv[1])