-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
105 lines (92 loc) · 3.67 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
"""
Created on Thu Apr 25 15:12:27 2021
@author: yang an
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import sys
from torch.nn import BatchNorm2d, Conv1d, Conv2d, ModuleList, Parameter, LayerNorm, InstanceNorm2d
class cheby_conv(nn.Module):
'''
x : [batch_size, feat_in, num_node ,tem_size] - input of all time step
nSample : number of samples = batch_size
nNode : number of node in graph
tem_size: length of temporal feature
c_in : number of input feature
c_out : number of output feature
adj : laplacian
K : size of kernel(number of cheby coefficients)
W : cheby_conv weight [K * feat_in, feat_out]
'''
def __init__(self, c_in, c_out, K, Kt):
super(cheby_conv, self).__init__()
c_in_new = (K) * c_in
self.conv1 = Conv2d(c_in_new, c_out, kernel_size=(1, 1),
stride=(1, 1), bias=True)
self.K = K
def forward(self, x, adj):
nSample, feat_in, nNode, length = x.shape
Ls = []
L1 = adj
L0 = torch.eye(nNode).cuda()
Ls.append(L0)
Ls.append(L1)
for k in range(2, self.K):
L2 = 2 * torch.matmul(adj, L1) - L0
L0, L1 = L1, L2
Ls.append(L2)
Lap = torch.stack(Ls, 0) # [K,nNode, nNode]
# print(Lap)
Lap = Lap.transpose(-1, -2)
x = torch.einsum('bcnl,knq->bckql', x, Lap).contiguous()
x = x.view(nSample, -1, nNode, length)
out = self.conv1(x)
return out
class ST_BLOCK(nn.Module):
def __init__(self, c_in, c_out, num_nodes, tem_size, K, Kt):
super(ST_BLOCK, self).__init__()
self.conv1 = Conv2d(c_in, c_out, kernel_size=(1, Kt), padding=(0, 1),
stride=(1, 1), bias=True)
self.gcn = cheby_conv(c_out // 2, c_out, K, 1)
self.conv2 = Conv2d(c_out, c_out * 2, kernel_size=(1, Kt), padding=(0, 1),
stride=(1, 1), bias=True)
self.c_out = c_out
self.conv_1 = Conv2d(c_in, c_out, kernel_size=(1, 1),
stride=(1, 1), bias=True)
# self.conv_2=Conv2d(c_out//2, c_out, kernel_size=(1, 1),
# stride=(1,1), bias=True)
def forward(self, x, supports):
x_input1 = self.conv_1(x)
x1 = self.conv1(x)
filter1, gate1 = torch.split(x1, [self.c_out // 2, self.c_out // 2], 1)
x1 = (filter1) * torch.sigmoid(gate1)
x2 = self.gcn(x1, supports)
x2 = torch.relu(x2)
# x_input2=self.conv_2(x2)
x3 = self.conv2(x2)
filter2, gate2 = torch.split(x3, [self.c_out, self.c_out], 1)
x = (filter2 + x_input1) * torch.sigmoid(gate2)
return x
class Gated_STGCN(nn.Module):
def __init__(self, c_in, c_out, num_nodes, week, day, recent, K, Kt):
super(Gated_STGCN, self).__init__()
tem_size = week + day + recent
self.block1 = ST_BLOCK(c_in, c_out, num_nodes, tem_size, K, Kt)
self.block2 = ST_BLOCK(c_out, c_out, num_nodes, tem_size, K, Kt)
self.block3 = ST_BLOCK(c_out, c_out, num_nodes, tem_size, K, Kt)
self.bn = BatchNorm2d(c_in, affine=False)
self.conv1 = Conv2d(c_out, 12, kernel_size=(1, recent), padding=(0, 0),
stride=(1, 1), bias=True)
self.c_out = c_out
def forward(self, x_w, x_d, x_r, supports):
x = self.bn(x_r)
shape = x.shape
x = self.block1(x, supports)
x = self.block2(x, supports)
x = self.block3(x, supports)
x = self.conv1(x).squeeze().permute(0, 2, 1).contiguous() # b,n,l
return x, supports, supports
# 模型8