-
Notifications
You must be signed in to change notification settings - Fork 0
/
params.py
89 lines (78 loc) · 2.97 KB
/
params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from utils import RSepExperiments
__all__ = [
'CalcSepExperiments', 'CalcLinSepExperiments',
'DTInterpretRobExperiments3', 'XgboostRobDTInterpretRobExperiments',
'RiskSlimExperiments3', 'LinSepBBMRobExperiments3',
]
random_seed = list(range(10))
DATASETS = [
"risk_ionosphere", "risk_diabetes",
"risk_breastcancer", "risk_adult", "risk_mushroom", "risk_mammo",
"risk_spambase", "risk_bank", "risk_careval", "risk_compasbin",
"risk_ficobin", "risk_bank_2", "risk_heart",
]
PREPROCESSOR = ['rminmax']
class XgboostRobDTInterpretRobExperiments(RSepExperiments):
def __new__(cls, *args, **kwargs):
cls.name = ""
cls.experiment_fn = 'xgboostrobdt_interpret_rob'
grid_params = []
grid_params.append({
'random_seed': random_seed, "dataset": DATASETS, "preprocessor": PREPROCESSOR,
'rsep': [0., 0.05, 0.1, 0.15, 0.2, 0.25],
})
cls.grid_params = grid_params
return RSepExperiments.__new__(cls, *args, **kwargs)
class LinSepBBMRobExperiments3(XgboostRobDTInterpretRobExperiments):
def __new__(cls, *args, **kwargs):
return XgboostRobDTInterpretRobExperiments.__new__(cls, *args, **kwargs)
def __init__(self):
self.experiment_fn = 'lin_sep_bbm_rob_3'
class DTInterpretRobExperiments3(RSepExperiments):
def __new__(cls, *args, **kwargs):
cls.name = ""
cls.experiment_fn = 'dt_interpret_rob_3'
grid_params = []
grid_params.append({
'random_seed': random_seed,
"dataset": DATASETS,
"preprocessor": PREPROCESSOR,
})
cls.grid_params = grid_params
return RSepExperiments.__new__(cls, *args, **kwargs)
class RiskSlimExperiments3(RSepExperiments):
def __new__(cls, *args, **kwargs):
cls.name = ""
cls.experiment_fn = 'risk_slim_3'
grid_params = []
grid_params.append({
'random_seed': random_seed,
"dataset": DATASETS,
"preprocessor": PREPROCESSOR,
})
cls.grid_params = grid_params
return RSepExperiments.__new__(cls, *args, **kwargs)
class CalcSepExperiments(RSepExperiments):
def __new__(cls, *args, **kwargs):
cls.experiment_fn = 'calc_separation'
cls.name = "sample experiment"
grid_params = []
grid_params.append({
'random_seed': [0],
"dataset": DATASETS,
"preprocessor": PREPROCESSOR,
})
cls.grid_params = grid_params
return RSepExperiments.__new__(cls, *args, **kwargs)
class CalcLinSepExperiments(RSepExperiments):
def __new__(cls, *args, **kwargs):
cls.experiment_fn = 'calc_lin_separation'
cls.name = "sample experiment"
grid_params = []
grid_params.append({
'random_seed': [0],
"dataset": DATASETS,
"preprocessor": PREPROCESSOR,
})
cls.grid_params = grid_params
return RSepExperiments.__new__(cls, *args, **kwargs)