-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_multi.py
209 lines (190 loc) · 8.62 KB
/
train_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import argparse
import os
import random
import time
import warnings
import esm
import numpy as np
import torch
import torch.distributed as dist
from torch.utils.data import DataLoader, DistributedSampler
from datasets.protdataset import ProtSeqDETRDataset
from engine import evaluate_multi, train_one_epoch
from models import build_model
import util.misc as utils
from util.clean import get_ec_id_dict, get_id_seq_dict
warnings.filterwarnings("ignore")
def get_dist_args():
"""
Get distributed arguments from environment variables for multi-node multi-gpu training.
"""
envvars = [
"WORLD_SIZE",
"RANK",
"LOCAL_RANK",
"NODE_RANK",
"NODE_COUNT",
"HOSTNAME",
"MASTER_ADDR",
"MASTER_PORT",
"NCCL_SOCKET_IFNAME",
"OMPI_COMM_WORLD_RANK",
"OMPI_COMM_WORLD_SIZE",
"OMPI_COMM_WORLD_LOCAL_RANK",
"AZ_BATCHAI_MPI_MASTER_NODE",
]
args = dict(gpus_per_node=torch.cuda.device_count())
missing = []
for var in envvars:
if var in os.environ:
args[var] = os.environ.get(var)
try:
args[var] = int(args[var])
except ValueError:
pass
else:
missing.append(var)
print(f"II Args: {args}")
if missing:
print(f"II Environment variables not set: {', '.join(missing)}.")
return args
def get_args_parser():
parser = argparse.ArgumentParser('ProtDETR', add_help=False)
# training args
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=8, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--lr_drop', default=200, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--model_name', type=str, default='ProtDETR_split100')
# Backbone
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# Transformer
parser.add_argument('--enc_layers', default=3, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=3, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=4, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=10, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false', help="Disables auxiliary decoding losses (loss at each layer)")
# Matcher
parser.add_argument('--set_cost_class', default=1, type=float, help="Class coefficient in the matching cost")
# weight of cross entropy loss for no-enzyme class
parser.add_argument('--eos_coef', default=0.0, type=float, help="Relative classification weight of the no-enzyme class")
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch')
parser.add_argument('--device', default='cuda', help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--num_workers', default=2, type=int)
parser.add_argument('--train_data', default='split100', type=str)
parser.add_argument('--esm_layer', default=32, type=int) # we follow ECRECER to set the layer to 32
return parser
def main(args):
# training args
args = get_args_parser().parse_args()
print(args)
# ddp args
dist_args = get_dist_args()
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.distributed = True
else:
args.distributed = False
if args.distributed:
master_uri = "tcp://%s:%s" % (dist_args.get("MASTER_ADDR"), dist_args.get("MASTER_PORT"))
os.environ["NCCL_DEBUG"] = "WARN"
node_rank = dist_args.get("NODE_RANK")
gpus_per_node = torch.cuda.device_count()
world_size = dist_args.get("WORLD_SIZE")
gpu_rank = dist_args.get("LOCAL_RANK")
node_rank = 0 if node_rank is None else node_rank
global_rank = node_rank * gpus_per_node + gpu_rank
dist.init_process_group(
backend="nccl", init_method=master_uri, world_size=world_size, rank=global_rank
)
torch.cuda.set_device(gpu_rank)
device = torch.device("cuda", gpu_rank)
else:
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
train_data_pth = f"./data/multi_func/{args.train_data}.csv" # e.g. split100
id_ec_train, ec_id_train = get_ec_id_dict(train_data_pth)
id_seq_train = get_id_seq_dict(train_data_pth)
train_dataset = ProtSeqDETRDataset(id_ec_train, ec_id_train, id_seq_train, max_labes=args.num_queries, esm_layer=args.esm_layer)
ec_to_label = train_dataset.ec_to_label
label_to_ec = train_dataset.label_to_ec
num_labels = len(ec_to_label)
args.num_classes = num_labels
# download esm model only once
if args.distributed:
if utils.get_rank() == 0:
esm_model, alphabet = esm.pretrained.esm1b_t33_650M_UR50S()
torch.distributed.barrier()
else:
torch.distributed.barrier()
esm_model, alphabet = esm.pretrained.esm1b_t33_650M_UR50S()
else:
esm_model, alphabet = esm.pretrained.esm1b_t33_650M_UR50S()
esm_model.eval()
esm_model.to(device)
model, criterion = build_model(args, train_dataset.ec_weight)
model.to(device)
criterion.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[gpu_rank], output_device=gpu_rank,)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
param_dicts = [
{"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
},
]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
if args.distributed:
sampler_train = DistributedSampler(train_dataset)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, sampler=sampler_train, collate_fn=train_dataset.collate_fn, num_workers=args.num_workers)
else:
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, collate_fn=train_dataset.collate_fn, num_workers=args.num_workers)
print("Start training")
for epoch in range(args.start_epoch, args.epochs):
epoch_start_time = time.time()
if args.distributed:
sampler_train.set_epoch(epoch)
train_loss, esm_time = train_one_epoch(esm_model, alphabet, args.esm_layer,
model, criterion, train_loader, optimizer, device, epoch,
args.clip_max_norm)
lr_scheduler.step()
train_end_time = time.time()
if utils.get_rank() == 0:
print(f'Epoch {epoch}/{args.epochs} | Train Loss: {train_loss:.4f} | Time: {(train_end_time - epoch_start_time):.2f}s | ESM Time: {esm_time:.2f}s')
if utils.get_rank() == 0:
if dist.is_initialized():
torch.save(model.module.state_dict(), f"./saved_models/{args.model_name}.pt")
else:
torch.save(model.state_dict(), f"./saved_models/{args.model_name}.pt")
if __name__ == '__main__':
parser = argparse.ArgumentParser('ProtDETR multi-func training script', parents=[get_args_parser()])
args = parser.parse_args()
main(args)