-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_recognition (1).py
50 lines (27 loc) · 1.02 KB
/
face_recognition (1).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import cv2
import numpy as np
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('trainer/trainer.yml')
cascadePath = "haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath);
font = cv2.FONT_HERSHEY_SIMPLEX
cam = cv2.VideoCapture(0)
while True:
ret, im =cam.read()
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(gray, 1.2,5)
for(x,y,w,h) in faces:
cv2.rectangle(im, (x-20,y-20), (x+w+20,y+h+20), (0,255,0), 4)
Id, conf = recognizer.predict(gray[y:y+h,x:x+w])
print(conf,"\t",Id)
if(Id == 1 and conf < 75):
Id = "Confirmed"
else:
Id = "Unknown"
cv2.rectangle(im, (x-22,y-90), (x+w+22, y-22), (0,255,0), -1)
cv2.putText(im, str(Id), (x,y-40), font, 2, (255,255,255), 3)
cv2.imshow('im',im)
if cv2.waitKey(10) & 0xFF == ord('q'):
break
cam.release()
cv2.destroyAllWindows()