-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuildDataset.py
53 lines (40 loc) · 1.16 KB
/
buildDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from config import EmotionConfig as config
from computervision.io import HDF5DatasetWriter
import numpy as np
print("[INFO] loading input data")
f = open(config.INPUT_PATH)
f.__next__()
(trainImages, trainLabels) = ([], [])
(valImages, valLabels) = ([], [])
(testImages, testLabels) = ([], [])
for row in f:
(label, image, usage) = row.strip().split(",")
label = int(label)
if config.NUM_CLASSES == 6:
if label == 1:
label = 0
if label > 0:
label -= 1
image = np.array(image.split(" "), dtype="uint8")
image = image.reshape((48, 48))
if usage == "Training":
trainImages.append(image)
trainLabels.append(label)
elif usage == "PrivateTest":
valImages.append(image)
valLabels.append(label)
else:
testImages.append(image)
testLabels.append(label)
datasets = [
(trainImages, trainLabels, config.TRAIN_HDF5),
(valImages, valLabels, config.VAL_HDF5),
(testImages, testLabels, config.TEST_HDF5)
]
for (images, labels, outputPath) in datasets:
print("[INFO] building {}".format(outputPath))
writer = HDF5DatasetWriter((len(images), 48, 48), outputPath)
for (image, label) in zip(images, labels):
writer.add([image], [label])
writer.close()
f.close()