-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbsimbulk.va
5211 lines (4958 loc) · 329 KB
/
bsimbulk.va
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// ****************************************************************************
// * BSIM-BULK 107.2.0 released on 08/20/2024 *
// * BSIM Bulk MOSFET Model Equations (Verilog-A) *
// ****************************************************************************
// ****************************************************************************
// * Copyright © 2024 University of California *
// * *
// * Project director: Prof. Chenming Hu, Prof.Sayeef Salahuddin *
// * *
// * Current developers: Yawar Hayat Zarkob (Ph.D. student, IIT Kanpur) *
// * Ayushi Sharma (Ph.D. student, IIT Kanpur) *
// * Dinesh Rajasekharan (Postdoc, UC Berkeley) *
// * Chetan K. Dabhi (Postdoc, UC Berkeley) *
// * Ahtisham Pampori (Postdoc, UC Berkeley) *
// * Girish Pahwa (Assistant Researcher, UC Berkeley) *
// * Prof. Yogesh Chauhan (IIT Kanpur) *
// * *
// * Past developers: Ravi Goel (Ph.D., IIT Kanpur) *
// * Harshit Agarwal (Postdoc, UC Berkeley) *
// * Pragya Kushwaha (Postdoc, UC Berkeley) *
// * Chetan Gupta (Ph.D., IIT Kanpur) *
// * Dr. Huan-Lin Chang (UC Berkeley) *
// * Sriramkumar Venugopalan, (UC Berkeley) *
// * M. A. Karim (UC Berkeley) *
// ****************************************************************************
`include "constants.vams"
`include "disciplines.vams"
// Disable strobe for improved performance speed
// To Use DISABLE_STROBE, Activate it here. Used Only at GEOMOD and RGEOMOD
// `define DISABLE_STROBE
`ifdef DISABLE_STROBE
`define STROBE(X)
`define STROBE2(X,Y)
`else
`define STROBE(X) $strobe(X)
`define STROBE2(X,Y) $strobe(X,Y)
`endif
// Junction capacitance macro between S/D and bulk
`define JunCap(Czbx, Vbx_jct, PBX_t, MJX, czbx_p1, czbx_p2, Qbxj) \
if (Czbx > 0.0) begin \
T1 = Vbx_jct / PBX_t; \
if (T1 < 0.9) begin \
arg = 1.0 - T1; \
if (MJX != 1.0) begin \
if (MJX == 0.5) begin \
sarg = 1.0 / sqrt(arg); \
end else begin \
sarg = lexp(-MJX * ln(arg)); \
end \
Qbxj = PBX_t * Czbx * (1.0 - arg * sarg) / (1.0 - MJX); \
end else begin \
Qbxj = PBX_t * Czbx * (-ln(arg)); \
end \
end else begin \
T2 = czbx_p1 * (T1 - 1.0) * (5.0 * MJX * (T1 - 1.0) + (1.0 + MJX)); \
Qbxj = PBX_t * Czbx * (T2 + czbx_p2); \
end \
end else begin \
Qbxj = 0.0; \
end \
// Normalized pinch-off voltage including PD
`define PO_psip(vg_vfb, gamma, DPD, phif, psip) \
T1 = 1.0 + DPD; \
vgfbPD = vg_vfb / T1; \
gammaPD = gamma / T1; \
T1 = 0.5 * vgfbPD - 3.0 * (1.0 + gammaPD / `M_SQRT2); \
T2 = T1 + sqrt(T1 * T1 + 6.0 * vgfbPD); \
if (vgfbPD < 0.0) begin \
T3 = (vgfbPD - T2) / gammaPD; \
psip = -lln(1.0 - T2 + T3 * T3); \
end else begin \
T3 = lexp(-T2); \
T1 = 0.5 * gammaPD; \
T2 = sqrt(vgfbPD - 1.0 + T3 + T1 * T1) - T1; \
psip = T2 * T2 + 1.0 - T3; \
end \
// Normalized charge-voltage relationship
`define BSIM_q(psip, phib, vch, gam, cslope, q) \
T8 = 0.5 * (psip + 1.0 + sqrt((psip - 1.0) * (psip - 1.0) + 0.25 * 2.0 * 2.0)); \
sqrtpsip = sqrt(T8); \
T0 = (1.0 + (gam / (2.0 * sqrtpsip))) / gam; \
T1 = psip - 2.0 * phib - vch; \
T2 = T1 / cslope - lln(4.0 * T0 * sqrtpsip); \
T8 = 0.5 * (T2 - 0.201491 - sqrt(T2 * (T2 + 0.402982) + 2.446562)); \
sqrtpsisa = sqrtpsip; \
if (T8 <= -68.0) begin \
T4 = -100.0; \
T5 = 20.0; \
if (T8 < T4 - 0.5 * T5) \
T3 = lexp(T4); \
else begin \
if (T8 > T4 + 0.5 * T5) \
T3 = lexp(T8); \
else begin \
T2 = (T8 - T4) / T5; \
T6 = T2 * T2; \
T3 = lexp(T4 + T5 * ((5.0 / 64.0) + 0.5 * T2 + T6 * ((15.0 / 16.0) - T6 * (1.25 - T6)))); \
end \
end \
q = T3 * (1.0 + T1 - cslope * T8 - cslope * lln(2.0 * T0 * (T3 * 2.0 * T0 + 2.0 * sqrtpsisa))); \
end else begin \
T3 = lexp(T8); \
sqrtpsisainv = 1.0 / sqrtpsisa; \
T4 = 2.0 * T3 + cslope * lln(T3 * 2.0 * T0 * (T3 * 2.0 * T0 + 2.0 * sqrtpsisa)) - T1; \
T5 = 2.0 + (1.0 * cslope / T3) + cslope * (T0 + sqrtpsisainv) / (T0 * T3 + sqrtpsisa); \
T3 = T3 - T4 / T5; \
T4 = 2.0 * T3 + cslope * lln(T3 * 2.0 * T0 * (T3 * 2.0 * T0 + 2.0 * sqrtpsisa)) - T1; \
T5 = 2.0 + (1.0 * cslope / T3) + cslope * (T0 + sqrtpsisainv) / (T0 * T3 + sqrtpsisa); \
T6 = cslope * ((T0 + sqrtpsisainv) / (T0 * T3 + sqrtpsisa)) * ((T0 + sqrtpsisainv) / (T0 * T3 + sqrtpsisa)); \
T7 = -cslope * ((1.0 / T3) * (1.0 / T3)) - (1.0 * cslope / (sqrtpsisa * sqrtpsisa * sqrtpsisa * (T0 * T3 + sqrtpsisa))) - T6; \
q = T3 - (T4 / T5) * (1.0 + T4 * T7 / (2.0 * T5 * T5)); \
end \
// Smoothing function for (max of x, x0 with deltax)
`define Smooth(x, x0, deltax, xsmooth) \
if ((x0 == 0.0) && ((x) < (-2500.0 * deltax))) begin \
xsmooth = -deltax * deltax / (16.0 * (x)); \
end else begin \
xsmooth = 0.5 * (x + x0 + sqrt((x - x0) * (x - x0) + 0.25 * deltax * deltax)); \
end \
// Smoothing function for (min of x, x0 with deltax)
`define Smooth2(x, x0, deltax, xsmooth) \
xsmooth = 0.5 * (x + x0 - sqrt((x - x0) * (x - x0) + 0.25 * deltax * deltax)) + 0.25 * deltax; \
// These macros represent the subroutines to process the geometry dependent
// parasitics for BSIM-BULK, which calculates Ps, Pd, As, Ad, and Rs and Rd
// for multi-fingers and various GEO and RGEO options.
// Define GEOMOD and RGEOMOD in the modelcard
`define BSIMBULKNumFingerDiff(nf, minSD, nuIntD, nuEndD, nuIntS, nuEndS) \
if ((nf % 2) != 0) begin \
nuEndD = 1.0; \
nuEndS = 1.0; \
nuIntD = 2.0 * max((nf - 1.0) / 2.0, 0.0); \
nuIntS = nuIntD; \
end else begin \
if (minSD == 1) begin \
nuEndD = 2.0; \
nuIntD = 2.0 * max((nf / 2.0 - 1.0), 0.0); \
nuEndS = 0.0; \
nuIntS = nf; \
end else begin \
nuEndD = 0.0; \
nuIntD = nf; \
nuEndS = 2.0; \
nuIntS = 2.0 * max((nf / 2.0 - 1.0), 0.0); \
end \
end
`define BSIMBULKRdsEndIso(Weffcj, Rsh, DMCG, DMCI, DMDG, nuEnd, rgeo, SRCFLAG, Rend) \
if (SRCFLAG == 1) begin \
case (rgeo) \
1, 2, 5: begin \
if (nuEnd == 0.0) begin \
Rend = 0.0; \
end else begin \
Rend = Rsh * DMCG / (Weffcj * nuEnd); \
end \
end \
3, 4, 6: begin \
if ((DMCG + DMCI) == 0.0) begin \
`STROBE("(DMCG + DMCI) can not be equal to zero"); \
end \
if (nuEnd == 0.0 || (DMCG + DMCI) == 0.0) begin \
Rend = 0.0; \
end else begin \
Rend = Rsh * Weffcj / (3.0 * nuEnd * (DMCG + DMCI)); \
end \
end \
default: begin \
`STROBE2("Warning: (instance %M) Specified RGEO = %d not matched (BSIMBULKRdsEndIso), Rend is set to zero.", rgeo); \
Rend = 0.0; \
end \
endcase \
end else begin \
case (rgeo) \
1, 3, 7: begin \
if (nuEnd == 0.0) begin \
Rend = 0.0; \
end else begin \
Rend = Rsh * DMCG / (Weffcj * nuEnd); \
end \
end \
2, 4, 8: begin \
if ((DMCG + DMCI) == 0.0) begin \
`STROBE("(DMCG + DMCI) can not be equal to zero"); \
end \
if (nuEnd == 0.0 || (DMCG + DMCI) == 0.0) begin \
Rend = 0.0; \
end \
else begin \
Rend = Rsh * Weffcj / (3.0 * nuEnd * (DMCG + DMCI)); \
end \
end \
default: begin \
`STROBE2("Warning: (instance %M) Specified RGEO = %d not matched (BSIMBULKRdsEndIso type 2), Rend is set to zero.", rgeo); \
Rend = 0.0; \
end \
endcase \
end
`define BSIMBULKRdsEndSha(Weffcj, Rsh, DMCG, DMCI, DMDG, nuEnd, rgeo, SRCFLAG, Rend) \
begin \
if (SRCFLAG == 1) begin \
case (rgeo) \
1, 2, 5: begin \
if (nuEnd == 0.0) begin \
Rend = 0.0; \
end else begin \
Rend = Rsh * DMCG / (Weffcj * nuEnd); \
end \
end \
3, 4, 6: begin \
if (DMCG == 0.0) begin \
`STROBE("DMCG can not be equal to zero"); \
end \
if (nuEnd == 0.0 || DMCG == 0.0) begin \
Rend = 0.0; \
end \
else begin \
Rend = Rsh * Weffcj / (6.0 * nuEnd * DMCG); \
end \
end \
default: begin \
`STROBE2("Warning: (instance %M) Specified RGEO = %d not matched (BSIMBULKRdsEndSha), Rend is set to zero.", rgeo); \
Rend = 0.0; \
end \
endcase \
end else begin \
case (rgeo) \
1, 3, 7: begin \
if (nuEnd == 0.0) begin \
Rend = 0.0; \
end else begin \
Rend = Rsh * DMCG / (Weffcj * nuEnd); \
end \
end \
2, 4, 8: begin \
if (DMCG == 0.0) begin \
`STROBE("DMCG can not be equal to zero"); \
end \
if (nuEnd == 0.0 || DMCG == 0.0) begin \
Rend = 0.0; \
end \
else begin \
Rend = Rsh * Weffcj / (6.0 * nuEnd * DMCG); \
end \
end \
default: begin \
`STROBE2("Warning: (instance %M) Specified RGEO=%d not matched (BSIMBULKRdsEndSha \
type 2), Rend is set to zero.", rgeo); \
Rend = 0.0; \
end \
endcase \
end \
end
`define BSIMBULKRdseffGeo(nf, geo, rgeo, minSD, Weffcj, Rsh, DMCG, DMCI, DMDG, SRCFLAG, Rtot) \
begin \
if (geo < 9) begin \
`BSIMBULKNumFingerDiff(nf, minSD, nuIntD, nuEndD, nuIntS, nuEndS) \
if (SRCFLAG == 1) begin \
if (nuIntS == 0.0) begin \
Rint = 0.0; \
end else begin \
Rint = Rsh * DMCG / ( Weffcj * nuIntS); \
end \
end \
else begin \
if (nuIntD == 0.0) begin \
Rint = 0.0; \
end else begin \
Rint = Rsh * DMCG / ( Weffcj * nuIntD); \
end \
end \
end \
case (geo) \
0: begin \
if (SRCFLAG == 1) begin \
`BSIMBULKRdsEndIso(Weffcj, Rsh, DMCG, DMCI, DMDG, nuEndS, \
rgeo, 1, Rend) \
end else begin \
`BSIMBULKRdsEndIso(Weffcj, Rsh, DMCG, DMCI, DMDG, nuEndD, \
rgeo, 0, Rend) \
end \
end \
1: begin \
if (SRCFLAG == 1) begin \
`BSIMBULKRdsEndIso(Weffcj, Rsh, DMCG, DMCI, DMDG, nuEndS, \
rgeo, 1, Rend) \
end else begin \
`BSIMBULKRdsEndSha(Weffcj, Rsh, DMCG, DMCI, DMDG, nuEndD, \
rgeo, 0, Rend) \
end \
end \
2: begin \
if (SRCFLAG == 1) begin \
`BSIMBULKRdsEndSha(Weffcj, Rsh, DMCG, DMCI, DMDG, nuEndS, \
rgeo, 1, Rend) \
end else begin \
`BSIMBULKRdsEndIso(Weffcj, Rsh, DMCG, DMCI, DMDG, nuEndD, \
rgeo, 0, Rend) \
end \
end \
3: begin \
if (SRCFLAG == 1) begin \
`BSIMBULKRdsEndSha(Weffcj, Rsh, DMCG, DMCI, DMDG, nuEndS, \
rgeo, 1, Rend) \
end else begin \
`BSIMBULKRdsEndSha(Weffcj, Rsh, DMCG, DMCI, DMDG, nuEndD, \
rgeo, 0, Rend) \
end \
end \
4: begin \
if (SRCFLAG == 1) begin \
`BSIMBULKRdsEndIso(Weffcj, Rsh, DMCG, DMCI, DMDG, nuEndS, \
rgeo, 1, Rend) \
end else begin \
Rend = Rsh * DMDG / Weffcj; \
end \
end \
5: begin \
if (SRCFLAG == 1) begin \
`BSIMBULKRdsEndSha(Weffcj, Rsh, DMCG, DMCI, DMDG, nuEndS, \
rgeo, 1, Rend) \
end else begin \
if (nuEndD == 0) begin \
Rend = 0; \
end else begin \
Rend = Rsh * DMDG / (Weffcj * nuEndD); \
end \
end \
end \
6: begin \
if (SRCFLAG == 1) begin \
Rend = Rsh * DMDG / Weffcj; \
end else begin \
`BSIMBULKRdsEndIso(Weffcj, Rsh, DMCG, DMCI, DMDG, nuEndD, \
rgeo, 0, Rend) \
end \
end \
7:begin \
if (SRCFLAG == 1) begin \
if (nuEndS == 0) begin \
Rend = 0; \
end else begin \
Rend = Rsh * DMDG / (Weffcj * nuEndS); \
end \
end else \
`BSIMBULKRdsEndSha(Weffcj, Rsh, DMCG, DMCI, DMDG, nuEndD, \
rgeo, 0, Rend) \
end \
8: begin \
Rend = Rsh * DMDG / Weffcj; \
end \
9: begin /* all wide contacts assumed for geo = 9 and 10 */ \
if (SRCFLAG == 1) begin \
Rend = 0.5 * Rsh * DMCG / Weffcj; \
if (nf == 2.0) begin \
Rint = 0.0; \
end else begin \
Rint = Rsh * DMCG / (Weffcj * (nf - 2.0)); \
end \
end \
else begin \
Rend = 0.0; \
Rint = Rsh * DMCG / (Weffcj * nf); \
end \
end \
10: begin \
if (SRCFLAG == 1) begin \
Rend = 0.0; \
Rint = Rsh * DMCG / (Weffcj * nf); \
end \
else begin \
Rend = 0.5 * Rsh * DMCG / Weffcj; \
if (nf == 2.0) begin \
Rint = 0.0; \
end else begin \
Rint = Rsh * DMCG / (Weffcj * (nf - 2.0)); \
end \
end \
end \
default: begin \
`STROBE2("Warning: (instance %M) Specified GEO = %d not matched (BSIMBULKRdseffGeo), Rint is set to zero.", geo); \
Rint = 0.0; \
end \
endcase \
if (Rint <= 0.0) begin \
Rtot = Rend; \
end else if (Rend <= 0.0) begin \
Rtot = Rint; \
end else begin \
Rtot = Rint * Rend / (Rint + Rend); \
end \
if (Rtot == 0.0) begin \
`STROBE("Warning: (instance %M) Zero resistance returned from RdseffGeo"); \
end \
end
// Effective PS, PD, AS, AD calculation, Ref: BSIM4
`define BSIMBULKPAeffGeo(nf, geo, minSD,Weffcj, DMCG, DMCI, DMDG, Ps, Pd, As, Ad) \
begin \
if (geo < 9) begin \
`BSIMBULKNumFingerDiff(nf, minSD, nuIntD, nuEndD, nuIntS, nuEndS) \
end \
T0 = DMCG + DMCI; \
T1 = DMCG + DMCG; \
T2 = DMDG + DMDG; \
PSiso = T0 + T0 + Weffcj; \
PDiso = T0 + T0 + Weffcj; \
PSsha = T1; \
PDsha = T1; \
PSmer = T2; \
PDmer = T2; \
ASiso = T0 * Weffcj; \
ADiso = T0 * Weffcj; \
ASsha = DMCG * Weffcj; \
ADsha = DMCG * Weffcj; \
ASmer = DMDG * Weffcj; \
ADmer = DMDG * Weffcj; \
case (geo) \
0: begin \
Ps = nuEndS * PSiso + nuIntS * PSsha; \
Pd = nuEndD * PDiso + nuIntD * PDsha; \
As = nuEndS * ASiso + nuIntS * ASsha; \
Ad = nuEndD * ADiso + nuIntD * ADsha; \
end \
1: begin \
Ps = nuEndS * PSiso + nuIntS * PSsha; \
Pd = (nuEndD + nuIntD) * PDsha; \
As = nuEndS * ASiso + nuIntS * ASsha; \
Ad = (nuEndD + nuIntD) * ADsha; \
end \
2: begin \
Ps = (nuEndS + nuIntS) * PSsha; \
Pd = nuEndD * PDiso + nuIntD * PDsha; \
As = (nuEndS + nuIntS) * ASsha; \
Ad = nuEndD * ADiso + nuIntD * ADsha; \
end \
3: begin \
Ps = (nuEndS + nuIntS) * PSsha; \
Pd = (nuEndD + nuIntD) * PDsha; \
As = (nuEndS + nuIntS) * ASsha; \
Ad = (nuEndD + nuIntD) * ADsha; \
end \
4: begin \
Ps = nuEndS * PSiso + nuIntS * PSsha; \
Pd = nuEndD * PDmer + nuIntD * PDsha; \
As = nuEndS * ASiso + nuIntS * ASsha; \
Ad = nuEndD * ADmer + nuIntD * ADsha; \
end \
5: begin \
Ps = (nuEndS + nuIntS) * PSsha; \
Pd = nuEndD * PDmer + nuIntD * PDsha; \
As = (nuEndS + nuIntS) * ASsha; \
Ad = nuEndD * ADmer + nuIntD * ADsha; \
end \
6: begin \
Ps = nuEndS * PSmer + nuIntS * PSsha; \
Pd = nuEndD * PDiso + nuIntD * PDsha; \
As = nuEndS * ASmer + nuIntS * ASsha; \
Ad = nuEndD * ADiso + nuIntD * ADsha; \
end \
7: begin \
Ps = nuEndS * PSmer + nuIntS * PSsha; \
Pd = (nuEndD + nuIntD) * PDsha; \
As = nuEndS * ASmer + nuIntS * ASsha; \
Ad = (nuEndD + nuIntD) * ADsha; \
end \
8: begin \
Ps = nuEndS * PSmer + nuIntS * PSsha; \
Pd = nuEndD * PDmer + nuIntD * PDsha; \
As = nuEndS * ASmer + nuIntS * ASsha; \
Ad = nuEndD * ADmer + nuIntD * ADsha; \
end \
9: begin \
Ps = PSiso + (nf - 1.0) * PSsha; \
Pd = nf * PDsha; \
As = ASiso + (nf - 1.0) * ASsha; \
Ad = nf * ADsha; \
end \
10: begin \
Ps = nf * PSsha; \
Pd = PDiso + (nf - 1.0) * PDsha; \
As = nf * ASsha; \
Ad = ADiso + (nf - 1.0) * ADsha; \
end \
default: begin \
`STROBE2("Warning: (instance %M) Specified GEO = %d not matched (BSIMBULKPAeffGeo \
), PS,PD,AS,AD set to zero.", geo); \
Ps = 0; \
Pd = 0; \
As = 0; \
Ad = 0; \
end \
endcase \
end \
// Numerical Constants
`define EXPL_THRESHOLD 80.0
`define MAX_EXPL 5.540622384e34
`define MIN_EXPL 1.804851387e-35
`define N_MINLOG 1.0e-38
`define DELTA_1 0.02
`define Oneby3 0.33333333333333333
`define REFTEMP 300.15 // 27 degrees C
// Physical Constants
`define ntype 1
`define ptype -1
`define q 1.60219e-19
`define EPS0 8.85418e-12
`define KboQ 8.617087e-5 // Joule/degree
// Macros for the model/instance parameters
//
// MPRxx model parameter real
// MPIxx model parameter integer
// IPRxx instance parameter real
// IPIxx instance parameter integer
// ||
// cc closed lower bound, closed upper bound
// oo open lower bound, open upper bound
// co closed lower bound, open upper bound
// oc open lower bound, closed upper bound
// cz closed lower bound = 0, open upper bound=inf
// oz open lower bound = 0, open upper bound=inf
// nb no bounds
// ex no bounds with exclude
// sw switch(integer only, values 0 = false and 1 = true)
// ty switch(integer only, values -1 = p-type and +1 = n-type)
//
// IPM instance parameter mFactor(multiplicity, implicit for LRM 2.2)
// OPP operating point parameter, includes units and description for printing
`define OPP(nam,uni,des) (* units = uni, desc = des *) real nam;
`define OPM(nam,uni,des) (* units = uni, desc = des, multiplicity = "multiply" *) real nam;
`define OPD(nam,uni,des) (* units = uni, desc = des, multiplicity = "divide" *) real nam;
`define MPRnb(nam,def,uni, des) (* units = uni, desc = des *) parameter real nam = def;
`define MPRex(nam,def,uni,exc, des) (* units = uni, desc = des *) parameter real nam = def exclude exc;
`define MPRcc(nam,def,uni,lwr,upr,des) (* units = uni, desc = des *) parameter real nam = def from[lwr:upr];
`define MPRoo(nam,def,uni,lwr,upr,des) (* units = uni, desc = des *) parameter real nam = def from(lwr:upr);
`define MPRco(nam,def,uni,lwr,upr,des) (* units = uni, desc = des *) parameter real nam = def from[lwr:upr);
`define MPRoc(nam,def,uni,lwr,upr,des) (* units = uni, desc = des *) parameter real nam = def from(lwr:upr];
`define MPRcz(nam,def,uni, des) (* units = uni, desc = des *) parameter real nam = def from[ 0:inf);
`define MPRoz(nam,def,uni, des) (* units = uni, desc = des *) parameter real nam = def from( 0:inf);
`define MPInb(nam,def,uni, des) (* units = uni, desc = des *) parameter integer nam = def;
`define MPIex(nam,def,uni,exc, des) (* units = uni, desc = des *) parameter integer nam = def exclude exc;
`define MPIcc(nam,def,uni,lwr,upr,des) (* units = uni, desc = des *) parameter integer nam = def from[lwr:upr];
`define MPIoo(nam,def,uni,lwr,upr,des) (* units = uni, desc = des *) parameter integer nam = def from(lwr:upr);
`define MPIco(nam,def,uni,lwr,upr,des) (* units = uni, desc = des *) parameter integer nam = def from[lwr:upr);
`define MPIoc(nam,def,uni,lwr,upr,des) (* units = uni, desc = des *) parameter integer nam = def from(lwr:upr];
`define MPIcz(nam,def,uni, des) (* units = uni, desc = des *) parameter integer nam = def from[ 0:inf);
`define MPIoz(nam,def,uni, des) (* units = uni, desc = des *) parameter integer nam = def from( 0:inf);
`define MPIsw(nam,def,uni, des) (* units = uni, desc = des *) parameter integer nam = def from[ 0: 1];
`define MPIty(nam,def,uni, des) (* units = uni, desc = des *) parameter integer nam = def from[ -1: 1] exclude 0;
`define IPRnb(nam,def,uni, des) (* units = uni, type = "instance", desc = des *) parameter real nam = def;
`define IPRex(nam,def,uni,exc, des) (* units = uni, type = "instance", desc = des *) parameter real nam = def exclude exc;
`define IPRcc(nam,def,uni,lwr,upr,des) (* units = uni, type = "instance", desc = des *) parameter real nam = def from[lwr:upr];
`define IPRoo(nam,def,uni,lwr,upr,des) (* units = uni, type = "instance", desc = des *) parameter real nam = def from(lwr:upr);
`define IPRco(nam,def,uni,lwr,upr,des) (* units = uni, type = "instance", desc = des *) parameter real nam = def from[lwr:upr);
`define IPRoc(nam,def,uni,lwr,upr,des) (* units = uni, type = "instance", desc = des *) parameter real nam = def from(lwr:upr];
`define IPRcz(nam,def,uni, des) (* units = uni, type = "instance", desc = des *) parameter real nam = def from[ 0:inf);
`define IPRoz(nam,def,uni, des) (* units = uni, type = "instance", desc = des *) parameter real nam = def from( 0:inf);
`define IPInb(nam,def,uni, des) (* units = uni, type = "instance", desc = des *) parameter integer nam = def;
`define IPIex(nam,def,uni,exc, des) (* units = uni, type = "instance", desc = des *) parameter integer nam = def exclude exc;
`define IPIcc(nam,def,uni,lwr,upr,des) (* units = uni, type = "instance", desc = des *) parameter integer nam = def from[lwr:upr];
`define IPIoo(nam,def,uni,lwr,upr,des) (* units = uni, type = "instance", desc = des *) parameter integer nam = def from(lwr:upr);
`define IPIco(nam,def,uni,lwr,upr,des) (* units = uni, type = "instance", desc = des *) parameter integer nam = def from[lwr:upr);
`define IPIoc(nam,def,uni,lwr,upr,des) (* units = uni, type = "instance", desc = des *) parameter integer nam = def from(lwr:upr];
`define IPIcz(nam,def,uni, des) (* units = uni, type = "instance", desc = des *) parameter integer nam = def from[ 0:inf);
`define IPIoz(nam,def,uni, des) (* units = uni, type = "instance", desc = des *) parameter integer nam = def from( 0:inf);
`define BPRco(nam, def, uni, lwr, upr, des) (* units = uni, type = "instance", desc = des *) parameter real nam = def from[lwr : upr);
`define BPRoz(nam, def, uni, des) (* units = uni, type = "instance", desc = des *) parameter real nam = def from(0.0 : inf);
`define BPRcz(nam, def, uni, des) (* units = uni, type = "instance", desc = des *) parameter real nam = def from[0.0 : inf);
`define BPIcc(nam, def, uni, lwr, upr, des) (* units = uni, type = "instance", desc = des *) parameter integer nam = def from[lwr : upr];
`define BPInb(nam,def,uni, des) (* units = uni, type = "instance", desc = des *) parameter integer nam = def;
`define BPRnb(nam,def,uni, des) (* units = uni, type = "instance", desc = des *) parameter real nam = def;
module bsimbulk(d, g, s, b, t);
inout d, g, s, b, t;
electrical d, g, s, b, di, di1, si, si1, gi, gm, bi, sbulk, dbulk, ddbulk;
thermal t;
// Extra internal nodes and branches (TNOIMOD=1) for correlated drain and gate noise
electrical N1, N2;
branch (N1) NI;
branch (N1) NR;
branch (N1) NC;
// Clamped exponential function
analog function real lexp;
input x;
real x;
begin
if (x > `EXPL_THRESHOLD) begin
lexp = `MAX_EXPL * (1.0 + x - `EXPL_THRESHOLD);
end else if (x < -`EXPL_THRESHOLD) begin
lexp = `MIN_EXPL;
end else begin
lexp = exp(x);
end
end
endfunction
// Clamped log function
analog function real lln;
input x;
real x;
begin
lln = ln(max(x, `N_MINLOG));
end
endfunction
// Hyperbolic smoothing function
analog function real hypsmooth;
input x, c;
real x, c;
begin
if (x < -1e4 * c) begin
hypsmooth = -c * c / x;
end else begin
hypsmooth = 0.5 * (x + sqrt(x * x + 4.0 * c * c));
end
end
endfunction
//ln(1+ exp(x)) function
analog function real ln_one_plus_exp;
input x;
real x;
begin
if (x > 37) begin
ln_one_plus_exp = x;
end else if (x < -37) begin
ln_one_plus_exp = exp(x);
end else begin
ln_one_plus_exp = ln(1.0 + exp(x));
end
end
endfunction
// Pure instance parameters
`IPRoz( L ,1.0e-5 ,"m" ,"Length" )
`IPRoz( W ,1.0e-5 ,"m" ,"Total width including fingers" )
`IPIco( NF ,1 ,"" ,1 ,inf ,"Number of fingers" )
`IPRcz( NRS ,1.0 ,"" ,"Number of squares in source" )
`IPRcz( NRD ,1.0 ,"" ,"Number of squares in drain" )
`IPRnb( VFBSDOFF ,0.0 ,"V" ,"Flatband voltage offset parameter" )
`IPIcc( MINZ ,0 ,"" ,0 ,1 ,"Minimize either drain or source" )
`IPIcc( RGATEMOD ,0 ,"" ,0 ,3 ,"Gate resistance model selector" )
`IPIcc( RBODYMOD ,0 ,"" ,0 ,2 ,"Distributed body R model" )
`IPIcc( GEOMOD ,0 ,"" ,0 ,10 ,"Geometry-dependent parasitics model" )
`IPIcc( RGEOMOD ,0 ,"" ,0 ,8 ,"Geometry-dependent source/drain resistance, 0: RSH-based, 1: Holistic" )
`IPRcz( RBPB ,50.0 ,"ohm" ,"Resistance between bNodePrime and bNode" )
`IPRcz( RBPD ,50.0 ,"ohm" ,"Resistance between bNodePrime and dbNode" )
`IPRcz( RBPS ,50.0 ,"ohm" ,"Resistance between bNodePrime and sbNode" )
`IPRcz( RBDB ,50.0 ,"ohm" ,"Resistance between bNode and dbNode" )
`IPRcz( RBSB ,50.0 ,"ohm" ,"Resistance between bNode and sbNode" )
`IPRcz( RDB ,50.0 ,"ohm" ,"Resistance between ddbulk node and d node" )
`IPRnb( SA ,0.0 ,"m" ,"Distance between OD edge from poly from one side" )
`IPRnb( SB ,0.0 ,"m" ,"Distance between OD edge from poly from other side" )
`IPRnb( SD ,0.0 ,"m" ,"Distance between neighboring fingers" )
`IPRoo( SCA ,0.0 ,"" ,-inf ,inf ,"Integral of the first distribution function for scattered well dopants" )
`IPRoo( SCB ,0.0 ,"" ,-inf ,inf ,"Integral of second distribution function for scattered well dopants" )
`IPRoo( SCC ,0.0 ,"" ,-inf ,inf ,"Integral of third distribution function for scattered well dopants" )
`IPRoo( SC ,0.0 ,"m" ,-inf ,inf ,"Distance to a single well edge; if <= 0.0, turn off WPE" )
`IPRcz( AS ,0.0 ,"m^2" ,"Source-to-substrate junction area" )
`IPRcz( AD ,0.0 ,"m^2" ,"Drain-to-substrate junction area" )
`IPRcz( PS ,0.0 ,"m" ,"Source-to-substrate junction perimeter" )
`IPRcz( PD ,0.0 ,"m" ,"Drain-to-substrate junction perimeter" )
// Convenience instance parameters
`IPRcz( MULT_I ,1.0 ,"" ,"Variability in current" )
`IPRcz( MULT_Q ,1.0 ,"" ,"Variability in charge" )
`IPRcz( MULT_FN ,MULT_I ,"" ,"Variability in flicker noise" )
// Both model and instance parameters
`BPRnb( XGW ,0.0 ,"m" ,"Distance from gate contact center to device edge" )
`BPIcc( NGCON ,1 ,"" ,1 ,2 ,"Number of gate contacts" )
`BPRnb( DTEMP ,0.0 ,"K" ,"Offset of device temperature" )
`BPRnb( MULU0 ,1.0 ,"m^2/(V*s)" ,"Multiplication factor for low field mobility" )
`BPRnb( DELVTO ,0.0 ,"V" ,"Zero bias threshold voltage variation" )
`BPRcz( IDS0MULT ,1.0 ,"" ,"Variability in drain current for miscellaneous reasons" )
`BPIcc( EDGEFET ,0 ,"" ,0 ,1 ,"0: Edge FET Model OFF, 1: Edge FET Model ON" )
`BPIcc( SSLMOD ,0 ,"" ,0 ,1 ,"Sub-surface leakage drain current, 0: Turn off 1: Turn on" )
// Pure model parameters
`MPIty( TYPE ,`ntype ,"" ,"N-type = 1, P-type = -1" )
`MPIcc( CVMOD ,0 ,"" ,0 ,1 ,"0: Consistent I-V/C-V, 1: Different I-V/C-V" )
`MPIcc( COVMOD ,0 ,"" ,0 ,1 ,"0: Use bias-independent overlap capacitances, 1: Use bias-dependent overlap capacitances" )
`MPIcc( RDSMOD ,0 ,"" ,0 ,2 ,"0: Internal bias dependent and external bias independent S/D resistance model, 1: External S/D resistance model, 2: Internal S/D resistance model" )
`MPIcc( WPEMOD ,0 ,"" ,0 ,1 ,"Model flag" )
`MPIcc( ASYMMOD ,0 ,"" ,0 ,1 ,"0: Asymmetry model turned off - forward mode parameters used, 1: Asymmetry model turned on" )
`MPIcc( GIDLMOD ,0 ,"" ,0 ,1 ,"0: Turn off GIDL current, 1: Turn on GIDL current" )
`MPIcc( IGCMOD ,0 ,"" ,0 ,1 ,"0: Turn off Igc, Igs and Igd, 1: Turn on Igc, Igs and Igd" )
`MPIcc( IGBMOD ,0 ,"" ,0 ,1 ,"0: Turn off Igb, 1: Turn on Igb" )
`MPIcc( TNOIMOD ,0 ,"" ,0 ,1 ,"Thermal noise model selector" )
`MPIcc( SHMOD ,0 ,"" ,0 ,1 ,"0: Self heating model OFF, 1: Self heating model ON" )
`MPIcc( MOBSCALE ,0 ,"" ,0 ,1 ,"Mobility scaling model, 0: Old Model, 1: New Model" )
// Device parameters
`MPRoz( LLONG ,1.0e-5 ,"m" ,"L of extracted long channel device" )
`MPRoz( LMLT ,1.0 ,"" ,"Length shrinking parameter" )
`MPRoz( WMLT ,1.0 ,"" ,"Width shrinking parameter" )
`MPRnb( XL ,0.0 ,"m" ,"L offset for channel length due to mask/etch effect" )
`MPRoz( WWIDE ,1.0e-5 ,"m" ,"W of extracted wide channel device" )
`MPRnb( XW ,0.0 ,"m" ,"W offset for channel width due to mask/etch effect" )
`MPRnb( LINT ,0.0 ,"m" ,"Delta L for I-V" )
`MPRnb( LL ,0.0 ,"m^(1+LLN)" ,"Length reduction parameter" )
`MPRnb( LW ,0.0 ,"m^(1+LWN)" ,"Length reduction parameter" )
`MPRnb( LWL ,0.0 ,"m^(1+LLN+LWN)" ,"Length reduction parameter" )
`MPRnb( LLN ,1.0 ,"" ,"Length reduction parameter" )
`MPRnb( LWN ,1.0 ,"" ,"Length reduction parameter" )
`MPRnb( WINT ,0.0 ,"m" ,"Delta W for I-V" )
`MPRnb( WL ,0.0 ,"m^(1+WLN)" ,"Width reduction parameter" )
`MPRnb( WW ,0.0 ,"m^(1+WWN)" ,"Width reduction parameter" )
`MPRnb( WWL ,0.0 ,"m^(1+WWN+WLN)" ,"Width reduction parameter" )
`MPRnb( WLN ,1.0 ,"" ,"Width reduction parameter" )
`MPRnb( WWN ,1.0 ,"" ,"Width reduction parameter" )
`MPRnb( DLC ,0.0 ,"m" ,"Delta L for C-V" )
`MPRnb( LLC ,0.0 ,"m^(1+LLN)" ,"Length reduction parameter" )
`MPRnb( LWC ,0.0 ,"m^(1+LWN)" ,"Length reduction parameter" )
`MPRnb( LWLC ,0.0 ,"m^(1+LWN+LLN)" ,"Length reduction parameter" )
`MPRnb( DWC ,0.0 ,"m" ,"Delta W for C-V" )
`MPRnb( WLC ,0.0 ,"m^(1+WLN)" ,"Width reduction parameter" )
`MPRnb( WWC ,0.0 ,"m^(1+WWN)" ,"Width reduction parameter" )
`MPRnb( WWLC ,0.0 ,"m^(1+WWN+WLN)" ,"Width reduction parameter" )
`MPRoo( TOXE ,3.0e-9 ,"m" ,0.0 ,inf ,"Effective gate dielectric thickness relative to SiO2" )
`MPRoo( TOXP ,TOXE ,"m" ,0.0 ,inf ,"Physical gate dielectric thickness. If not given, TOXP is calculated from TOXE and DTOX" )
`MPRnb( DTOX ,0.0 ,"m" ,"Difference between effective dielectric thickness" )
`MPRnb( NDEP ,1e24 ,"1/m^3" ,"Channel doping concentration for I-V" )
`MPRnb( NDEPL1 ,0.0 ,"m" ,"Length dependence coefficient of NDEP" )
`MPRoz( NDEPLEXP1 ,1.0 ,"" ,"Length dependence exponent coefficient of NDEP" )
`MPRnb( NDEPL2 ,0.0 ,"m" ,"Length dependence of NDEP - For Short Channel Devices" )
`MPRoz( NDEPLEXP2 ,2.0 ,"" ,"Length dependence exponent coefficient of NDEP" )
`MPRnb( NDEPW ,0.0 ,"m" ,"Width dependence coefficient of NDEP" )
`MPRoz( NDEPWEXP ,1.0 ,"" ,"Width dependence exponent coefficient of NDEP" )
`MPRnb( NDEPWL ,0.0 ,"m^2" ,"Width-length dependence coefficient of NDEP" )
`MPRoz( NDEPWLEXP ,1.0 ,"" ,"Width-length dependence exponent coefficient of NDEP" )
`MPRnb( LNDEP ,0.0 ,"1/m^2" ,"Length dependence of NDEP" )
`MPRnb( WNDEP ,0.0 ,"1/m^2" ,"Width dependence of NDEP" )
`MPRnb( PNDEP ,0.0 ,"1/m" ,"Area dependence of NDEP" )
`MPRnb( NDEPCV ,NDEP ,"1/m^3" ,"Channel doping concentration for C-V" )
`MPRnb( NDEPCVL1 ,NDEPL1 ,"m" ,"Length dependence coefficient of NDEPCV" )
`MPRoz( NDEPCVLEXP1 ,NDEPLEXP1 ,"" ,"Length dependence exponent coefficient of NDEPCV" )
`MPRnb( NDEPCVL2 ,NDEPL2 ,"m" ,"Length dependence coefficient of NDEPCV - For Short Channel Devices" )
`MPRoz( NDEPCVLEXP2 ,NDEPLEXP2 ,"" ,"Length dependence exponent coefficient of NDEPCV" )
`MPRnb( NDEPCVW ,NDEPW ,"m" ,"Width dependence coefficient of NDEPCV" )
`MPRoz( NDEPCVWEXP ,NDEPWEXP ,"" ,"Width dependence exponent coefficient of NDEPCV" )
`MPRnb( NDEPCVWL ,NDEPWL ,"m^2" ,"Width-length dependence coefficient of NDEPCV" )
`MPRoz( NDEPCVWLEXP ,NDEPWLEXP ,"" ,"Width-length dependence exponent coefficient of NDEPCV" )
`MPRnb( LNDEPCV ,LNDEP ,"1/m^2" ,"Length dependence of NDEP for C-V" )
`MPRnb( WNDEPCV ,WNDEP ,"1/m^2" ,"Width dependence of NDEP for C-V" )
`MPRnb( PNDEPCV ,PNDEP ,"1/m" ,"Area dependence of NDEP for C-V" )
`MPRnb( NGATE ,5e25 ,"1/m^3" ,"Gate doping concentration" )
`MPRnb( LNGATE ,0.0 ,"1/m^2" ,"Length dependence of NGATE" )
`MPRnb( WNGATE ,0.0 ,"1/m^2" ,"Width dependence of NGATE" )
`MPRnb( PNGATE ,0.0 ,"1/m" ,"Area dependence of NGATE" )
`MPRoz( NI0SUB ,1.1e16 ,"1/m^3" ,"Intrinsic carrier concentration of the substrate at 300.15K" )
`MPRoo( BG0SUB ,1.17 ,"eV" ,0.0 ,inf ,"Bandgap of substrate at 300.15K" )
`MPRoo( EPSRSUB ,11.9 ,"" ,0.0 ,inf ,"Relative dielectric constant of the channel material" )
`MPRoo( EPSROX ,3.9 ,"" ,0.0 ,inf ,"Relative dielectric constant of the gate dielectric" )
`MPRnb( XJ ,1.5e-7 ,"m" ,"S/D junction depth" )
`MPRnb( LXJ ,0.0 ,"m^2" ,"Length dependence of XJ" )
`MPRnb( WXJ ,0.0 ,"m^2" ,"Width dependence of XJ" )
`MPRnb( PXJ ,0.0 ,"m^3" ,"Area dependence of XJ" )
`MPRnb( VFB ,-0.5 ,"V" ,"Flatband voltage" )
`MPRnb( LVFB ,0.0 ,"V*m" ,"Length dependence of VFB" )
`MPRnb( WVFB ,0.0 ,"V*m" ,"Width dependence of VFB" )
`MPRnb( PVFB ,0.0 ,"V*m^2" ,"Area dependence of VFB" )
`MPRnb( VFBL ,0.0 ,"m" ,"Length dependence coefficient of VFBCV" )
`MPRoz( VFBLEXP ,1.0 ,"" ,"Length dependence exponent coefficient of VFBCV" )
`MPRnb( VFBW ,0.0 ,"m" ,"Width dependence coefficient of VFBCV" )
`MPRoz( VFBWEXP ,1.0 ,"" ,"Width dependence exponent coefficient of VFBCV" )
`MPRnb( VFBWL ,0.0 ,"m^2" ,"Width-length dependence coefficient of VFBCV" )
`MPRoz( VFBWLEXP ,1.0 ,"" ,"Width-length dependence coefficient of VFBCV" )
`MPRnb( VFBCV ,VFB ,"V" ,"Flatband voltage for C-V" )
`MPRnb( LVFBCV ,LVFB ,"V*m" ,"Length dependence of VFBCV" )
`MPRnb( WVFBCV ,WVFB ,"V*m" ,"Width dependence of VFBCV" )
`MPRnb( PVFBCV ,PVFB ,"V*m^2" ,"Area dependence of VFBCV" )
`MPRnb( VFBCVL ,VFBL ,"m" ,"Length dependence coefficient of VFBCV" )
`MPRoz( VFBCVLEXP ,VFBLEXP ,"" ,"Length dependence exponent coefficient of VFBCV" )
`MPRnb( VFBCVW ,VFBW ,"m" ,"Width dependence coefficient of VFBCV" )
`MPRoz( VFBCVWEXP ,VFBWEXP ,"" ,"Width dependence exponent coefficient of VFBCV" )
`MPRnb( VFBCVWL ,VFBWL ,"m^2" ,"Width-length dependence coefficient of VFBCV" )
`MPRoz( VFBCVWLEXP ,VFBWLEXP ,"" ,"Width-length dependence coefficient of VFBCV" )
`MPRnb( DELVFBACC ,0.0 ,"" ,"VFB shift in the accumulation region, valid for CVMOD = 1 only" )
// Diode parameters
`MPIcc( PERMOD ,1 ,"" ,0 ,1 ,"Whether PS/PD (when given) include gate-edge perimeter" )
`MPRnb( DWJ ,DWC ,"m" ,"Delta W for S/D junctions" )
// Short channel effects
`MPRnb( NSD ,1e26 ,"1/m^3" ,"S/D doping concentration" )
`MPRnb( LNSD ,0.0 ,"1/m^2" ,"Length dependence of NSD" )
`MPRnb( WNSD ,0.0 ,"1/m^2" ,"Width dependence of NSD" )
`MPRnb( PNSD ,0.0 ,"1/m" ,"Area dependence of NSD" )
`MPRnb( DVTP0 ,0.0 ,"m" ,"DITS" )
`MPRnb( LDVTP0 ,0 ,"m^2" ,"Length dependence of DVTP0" )
`MPRnb( WDVTP0 ,0 ,"m^2" ,"Width dependence of DVTP0" )
`MPRnb( PDVTP0 ,0 ,"m^3" ,"Area dependence of DVTP0" )
`MPRnb( DVTP1 ,0.0 ,"1/V" ,"DITS" )
`MPRnb( LDVTP1 ,0 ,"m/V" ,"Length dependence of DVTP1" )
`MPRnb( WDVTP1 ,0 ,"m/V" ,"Width dependence of DVTP1" )
`MPRnb( PDVTP1 ,0 ,"m^2/V" ,"Area dependence of DVTP1" )
`MPRnb( DVTP2 ,0.0 ,"m*V" ,"DITS" )
`MPRnb( LDVTP2 ,0 ,"m^2*V" ,"Length dependence of DVTP2" )
`MPRnb( WDVTP2 ,0 ,"m^2*V" ,"Width dependence of DVTP2" )
`MPRnb( PDVTP2 ,0 ,"m^3*V" ,"Area dependence of DVTP2" )
`MPRnb( DVTP3 ,0.0 ,"" ,"DITS" )
`MPRnb( LDVTP3 ,0 ,"m" ,"Length dependence of DVTP3" )
`MPRnb( WDVTP3 ,0 ,"m" ,"Width dependence of DVTP3" )
`MPRnb( PDVTP3 ,0 ,"m^2" ,"Area dependence of DVTP3" )
`MPRnb( DVTP4 ,0.0 ,"1/V" ,"DITS" )
`MPRnb( LDVTP4 ,0 ,"m/V" ,"Length dependence of DVTP4" )
`MPRnb( WDVTP4 ,0 ,"m/V" ,"Width dependence of DVTP4" )
`MPRnb( PDVTP4 ,0 ,"m^2/V" ,"Area dependence of DVTP4" )
`MPRnb( DVTP5 ,0.0 ,"V" ,"DITS" )
`MPRnb( LDVTP5 ,0 ,"m*V" ,"Length dependence of DVTP5" )
`MPRnb( WDVTP5 ,0 ,"m*V" ,"Width dependence of DVTP5" )
`MPRnb( PDVTP5 ,0 ,"m^2*V" ,"Area dependence of DVTP5" )
`MPRnb( PHIN ,0.045 ,"V" ,"Non-uniform vertical doping effect on surface potential" )
`MPRnb( LPHIN ,0.0 ,"m*V" ,"Length dependence of PHIN" )
`MPRnb( WPHIN ,0.0 ,"m*V" ,"Width dependence of PHIN" )
`MPRnb( PPHIN ,0.0 ,"m^2*V" ,"Area dependence of PHIN" )
`MPRnb( ETA0 ,0.08 ,"" ,"DIBL coefficient" )
`MPRnb( LETA0 ,0.0 ,"m" ,"Length dependence of ETA0" )
`MPRnb( WETA0 ,0.0 ,"m" ,"Width dependence of ETA0" )
`MPRnb( PETA0 ,0.0 ,"m^2" ,"Area dependence of ETA0" )
`MPRnb( ETA0R ,ETA0 ,"" ,"DIBL coefficient" )
`MPRnb( LETA0R ,LETA0 ,"m" ,"Length dependence of ETA0R" )
`MPRnb( WETA0R ,WETA0 ,"m" ,"Width dependence of ETA0R" )
`MPRnb( PETA0R ,PETA0 ,"m^2" ,"Area dependence of ETA0R" )
`MPRnb( DSUB ,1.0 ,"" ,"Length scaling exponent for DIBL" )
`MPRnb( ETAB ,-0.07 ,"1/V" ,"Body bias coefficient for subthreshold DIBL effect" )
`MPRoz( ETABEXP ,1.0 ,"" ,"Exponent coefficient of ETAB" )
`MPRnb( LETAB ,0.0 ,"m/V" ,"Length dependence of ETAB" )
`MPRnb( WETAB ,0.0 ,"m/V" ,"Width dependence of ETAB" )
`MPRnb( PETAB ,0.0 ,"m^2/V" ,"Area dependence of ETAB" )
`MPRnb( K1 ,0.0 ,"V^0.5" ,"First-order body-bias Vth shift due to vertical non-uniform doping" )
`MPRnb( K1L ,0.0 ,"" ,"length dependence coefficient of K1" )
`MPRoz( K1LEXP ,1.0 ,"" ,"Length dependence exponent coefficient of K1" )
`MPRnb( K1W ,0.0 ,"" ,"Width dependence coefficient of K1" )
`MPRoz( K1WEXP ,1.0 ,"" ,"Width dependence exponent coefficient of K1" )
`MPRnb( K1WL ,0.0 ,"" ,"Width-length dependence coefficient of K1" )
`MPRoz( K1WLEXP ,1.0 ,"" ,"Width-length dependence exponent coefficient of K1" )
`MPRnb( LK1 ,0.0 ,"m*V^0.5" ,"Length dependence of K1" )
`MPRnb( WK1 ,0.0 ,"m*V^0.5" ,"Width dependence of K1" )
`MPRnb( PK1 ,0.0 ,"m^2*V^0.5" ,"Area dependence of K1" )
`MPRnb( K2 ,0.0 ,"V" ,"Vth shift due to vertical non-uniform doping" )
`MPRnb( K2L ,0.0 ,"m^K2LEXP" ,"Length dependence coefficient of K2" )
`MPRoz( K2LEXP ,1.0 ,"" ,"Length dependence exponent coefficient of K2" )
`MPRnb( K2W ,0.0 ,"m^K2WEXP" ,"Width dependence coefficient of K2" )
`MPRoz( K2WEXP ,1.0 ,"" ,"Width dependence exponent coefficient of K2" )
`MPRnb( K2WL ,0.0 ,"m^(2*K2WLEXP)" ,"Width-length dependence coefficient of K2" )
`MPRoz( K2WLEXP ,1.0 ,"" ,"Width-length dependence exponent coefficient of K2" )
`MPRnb( LK2 ,0.0 ,"V*m" ,"Length dependence of K2" )
`MPRnb( WK2 ,0.0 ,"V*m" ,"Width dependence of K2" )
`MPRnb( PK2 ,0.0 ,"V*m^2" ,"Area dependence of K2" )
// Quantum mechanical effects
`MPRcz( ADOS ,0.0 ,"" ,"Quantum mechanical effect pre-factor switch in inversion" )
`MPRcz( BDOS ,1.0 ,"" ,"Charge centroid parameter - slope of C-V curve under QME in inversion" )
`MPRoz( QM0 ,1.0e-3 ,"" ,"Charge centroid parameter - starting point for QME in inversion" )
`MPRcz( ETAQM ,0.54 ,"" ,"Bulk charge coefficient for charge centroid in inversion" )
// Sub-threshold swing factor
`MPRnb( CIT ,0.0 ,"F/m^2" ,"Parameter for interface traps" )
`MPRnb( LCIT ,0.0 ,"F/m" ,"Length dependence of CIT" )
`MPRnb( WCIT ,0.0 ,"F/m" ,"Width dependence of CIT" )
`MPRnb( PCIT ,0.0 ,"F" ,"Area dependence of CIT" )
`MPRnb( NFACTOR ,0.0 ,"" ,"Subthreshold slope factor" )
`MPRnb( NFACTORL ,0.0 ,"m^NFACTORLEXP" ,"Length dependence coefficient of NFACTOR" )
`MPRoz( NFACTORLEXP ,1.0 ,"" ,"Length dependence exponent coefficient of NFACTOR" )
`MPRnb( NFACTORW ,0.0 ,"m^NFACTORWEXP" ,"Width dependence coefficient of NFACTOR" )
`MPRoz( NFACTORWEXP ,1.0 ,"" ,"Width dependence exponent coefficient of NFACTOR" )
`MPRnb( NFACTORWL ,0.0 ,"m^(2*NFACTORWLEXP)" ,"Width-length dependence coefficient of NFACTOR" )
`MPRoz( NFACTORWLEXP ,1.0 ,"" ,"Width-length dependence exponent coefficient of NFACTOR" )
`MPRnb( LNFACTOR ,0.0 ,"m" ,"Length dependence of NFACTOR" )
`MPRnb( WNFACTOR ,0.0 ,"m" ,"Width dependence of NFACTOR" )
`MPRnb( PNFACTOR ,0.0 ,"m^2" ,"Area dependence of NFACTOR" )
`MPRnb( CDSCD ,1e-9 ,"F/m^2/V" ,"Drain bias sensitivity of subthreshold slope" )
`MPRnb( CDSCDL ,0.0 ,"m^CDSCDLEXP" ,"Length dependence coefficient of CDSCD" )
`MPRoz( CDSCDLEXP ,1.0 ,"" ,"Length dependence exponent coefficient of CDSCD" )
`MPRnb( LCDSCD ,0.0 ,"F/m/V" ,"Length dependence of CDSCD" )
`MPRnb( WCDSCD ,0.0 ,"F/m/V" ,"Width dependence of CDSCD" )
`MPRnb( PCDSCD ,0.0 ,"F/V" ,"Area dependence of CDSCD" )
`MPRnb( CDSCDR ,CDSCD ,"F/m^2/V" ,"Drain bias sensitivity of subthreshold slope" )
`MPRnb( LCDSCDR ,LCDSCD ,"F/m/V" ,"Length dependence of CDSCDR" )
`MPRnb( WCDSCDR ,WCDSCD ,"F/m/V" ,"Width dependence of CDSCDR" )
`MPRnb( PCDSCDR ,PCDSCD ,"F/V" ,"Area dependence of CDSCDR" )
`MPRnb( CDSCB ,0.0 ,"F/m^2/V" ,"Body-bias sensitivity of subthreshold slope" )
`MPRnb( CDSCBL ,0.0 ,"m^CDSCBLEXP" ,"Length dependence coefficient of CDSCB" )
`MPRoz( CDSCBLEXP ,1.0 ,"" ,"Length dependence exponent coefficient of CDSCB" )
`MPRnb( LCDSCB ,0.0 ,"F/m/V" ,"Length dependence of CDSCB" )
`MPRnb( WCDSCB ,0.0 ,"F/m/V" ,"Width dependence of CDSCB" )
`MPRnb( PCDSCB ,0.0 ,"F/V" ,"Area dependence of CDSCB" )
// Drain saturation voltage
`MPRnb( VSAT ,1e5 ,"m/s" ,"Saturation velocity" )
`MPRnb( LVSAT ,0.0 ,"m^2/s" ,"Length dependence of VSAT" )
`MPRnb( WVSAT ,0.0 ,"m^2/s" ,"Width dependence of VSAT" )
`MPRnb( PVSAT ,0.0 ,"m^3/s" ,"Area dependence of VSAT" )
`MPRnb( VSATL ,0.0 ,"m^VSATLEXP" ,"Length dependence coefficient of VSAT" )
`MPRoz( VSATLEXP ,1.0 ,"" ,"Length dependence exponent coefficient of VSAT" )
`MPRnb( VSATW ,0.0 ,"m^VSATWEXP" ,"Width dependence coefficient of VSAT" )
`MPRoz( VSATWEXP ,1.0 ,"" ,"Width dependence exponent coefficient of VSAT" )
`MPRnb( VSATWL ,0.0 ,"m^(2*VSATWLEXP)" ,"Width-length dependence coefficient of VSAT" )
`MPRoz( VSATWLEXP ,1.0 ,"" ,"Width-length dependence exponent coefficient of of VSAT" )
`MPRnb( VSATR ,VSAT ,"m/s" ,"Saturation velocity" )
`MPRnb( LVSATR ,LVSAT ,"m^2/s" ,"Length dependence of VSATR" )
`MPRnb( WVSATR ,WVSAT ,"m^2/s" ,"Width dependence of VSATR" )
`MPRnb( PVSATR ,PVSAT ,"m^3/s" ,"Area dependence of VSATR" )
`MPRnb( DELTA ,0.125 ,"" ,"Smoothing function factor for Vdsat" )
`MPRnb( LDELTA ,0.0 ,"m" ,"Length dependence of DELTA" )
`MPRnb( WDELTA ,0.0 ,"m" ,"Width dependence of DELTA" )
`MPRnb( PDELTA ,0.0 ,"m^2" ,"Area dependence of DELTA" )
`MPRnb( DELTAL ,0.0 ,"m^DELTALEXP" ,"Length dependence coefficient of DELTA" )
`MPRoz( DELTALEXP ,1.0 ,"" ,"Length dependence exponent coefficient of DELTA" )
`MPRnb( VSATCV ,VSAT ,"m/s" ,"VSAT parameter for C-V" )
`MPRnb( LVSATCV ,LVSAT ,"m^2/s" ,"Length dependence of VSATCV" )
`MPRnb( WVSATCV ,WVSAT ,"m^2/s" ,"Width dependence of VSATCV" )
`MPRnb( PVSATCV ,PVSAT ,"m^3/s" ,"Area dependence of VSATCV" )
`MPRnb( VSATCVL ,VSATL ,"m^VSATCVLEXP" ,"Length dependence coefficient of VSATCV" )
`MPRoz( VSATCVLEXP ,VSATLEXP ,"" ,"Length dependence exponent coefficient of VSATCV" )
`MPRnb( VSATCVW ,VSATW ,"m^VSATCVWEXP" ,"Width dependence coefficient of VSATCV" )
`MPRoz( VSATCVWEXP ,VSATWEXP ,"" ,"Width dependence exponent coefficient of VSATCV" )
`MPRnb( VSATCVWL ,VSATWL ,"m^(2*VSATCVWLEXP)" ,"Width-length dependence coefficient of VSATCV" )
`MPRoz( VSATCVWLEXP ,VSATWLEXP ,"" ,"Width-length dependence exponent coefficient of VSATCV" )
// Mobility degradation
`MPRoo( UP1 ,0.0 ,"" ,-inf ,inf ,"Mobility channel length coefficient" )
`MPRex( LP1 ,1.0e-8 ,"m" ,0.0 ,"Mobility channel length exponential coefficient" )
`MPRoo( UP2 ,0.0 ,"" ,-inf ,inf ,"Mobility channel length coefficient" )
`MPRex( LP2 ,1.0e-8 ,"m" ,0.0 ,"Mobility channel length exponential coefficient" )
`MPRoz( U0 ,67.0e-3 ,"m^2/V/s" ,"Low Field mobility." )
`MPRnb( U0L ,0.0 ,"m^U0LEXP" ,"Length dependence coefficient of U0" )
`MPRoz( U0LEXP ,1.0 ,"" ,"Length dependence exponent coefficient of U0L" )
`MPRnb( LU0 ,0.0 ,"m^3/V/s" ,"Length dependence of U0" )
`MPRnb( WU0 ,0.0 ,"m^3/V/s" ,"Width dependence of U0" )
`MPRnb( PU0 ,0.0 ,"m^4/V/s" ,"Area dependence of U0" )
`MPRnb( U0R ,U0 ,"m^2/V/s" ,"Reverse-mode Low Field mobility." )
`MPRnb( LU0R ,LU0 ,"m^3/V/s" ,"Length dependence of U0R" )
`MPRnb( WU0R ,WU0 ,"m^3/V/s" ,"Width dependence of U0R" )
`MPRnb( PU0R ,PU0 ,"m^4/V/s" ,"Area dependence of U0R" )
`MPRnb( ETAMOB ,1.0 ,"" ,"Effective field parameter (should be kept close to 1)" )
`MPRnb( UA ,0.001 ,"(m/V)^EU" ,"Mobility reduction coefficient" )
`MPRnb( UAL ,0.0 ,"m^UALEXP" ,"Length dependence coefficient of UA" )
`MPRoz( UALEXP ,1.0 ,"" ,"Length dependence exponent coefficient of UA" )
`MPRnb( UAW ,0.0 ,"m^UAWEXP" ,"Width dependence coefficient of UA" )
`MPRoz( UAWEXP ,1.0 ,"" ,"Width dependence exponent coefficient of UA" )
`MPRnb( UAWL ,0.0 ,"m^UAWLEXP" ,"Width-length dependence coefficient of UA" )
`MPRoz( UAWLEXP ,1.0 ,"" ,"Width-length dependence coefficient of UA" )
`MPRnb( LUA ,0.0 ,"m*(m/V)^EU" ,"Length dependence of UA" )
`MPRnb( WUA ,0.0 ,"m*(m/V)^EU" ,"Width dependence of UA" )
`MPRnb( PUA ,0.0 ,"m^2*(m/V)^EU" ,"Area dependence of UA" )
`MPRnb( UAR ,UA ,"(m/V)^EU" ,"Reverse-mode mobility reduction coefficient" )
`MPRnb( LUAR ,LUA ,"m*(m/V)^EU" ,"Length dependence of UAR" )
`MPRnb( WUAR ,WUA ,"m*(m/V)^EU" ,"Width dependence of UAR" )
`MPRnb( PUAR ,PUA ,"m^2*(m/V)^EU" ,"Area dependence of UAR" )
`MPRnb( EU ,1.5 ,"" ,"Mobility reduction exponent" )
`MPRnb( LEU ,0.0 ,"m" ,"Length dependence of EU" )
`MPRnb( WEU ,0.0 ,"m" ,"Width dependence of EU" )
`MPRnb( PEU ,0.0 ,"m^2" ,"Area dependence of EU" )
`MPRnb( EUL ,0.0 ,"m^EULEXP" ,"Length dependence coefficient of EU" )
`MPRoz( EULEXP ,1.0 ,"" ,"Length dependence exponent coefficient of EU" )
`MPRnb( EUW ,0.0 ,"m^EUWEXP" ,"Width dependence coefficient of EU" )
`MPRoz( EUWEXP ,1.0 ,"" ,"Width dependence exponent coefficient of EU" )
`MPRnb( EUWL ,0.0 ,"m^EUWLEXP" ,"Width-length dependence coefficient of EU" )
`MPRoz( EUWLEXP ,1.0 ,"" ,"Width-length dependence exponent coefficient of EU" )
`MPRnb( UD ,0.001 ,"" ,"Coulomb scattering parameter" )
`MPRnb( UDL ,0.0 ,"m^UDLEXP" ,"Length dependence coefficient of UD" )
`MPRoz( UDLEXP ,1.0 ,"" ,"Length dependence exponent coefficient of UD" )
`MPRnb( LUD ,0.0 ,"m" ,"Length dependence of UD" )
`MPRnb( WUD ,0.0 ,"m" ,"Width dependence of UD" )
`MPRnb( PUD ,0.0 ,"m^2" ,"Area dependence of UD" )
`MPRnb( UDR ,UD ,"" ,"Reverse-mode Coulomb scattering parameter" )
`MPRnb( LUDR ,LUD ,"m" ,"Length dependence of UDR" )
`MPRnb( WUDR ,WUD ,"m" ,"Width dependence of UDR" )
`MPRnb( PUDR ,PUD ,"m^2" ,"Area dependence of UDR" )
`MPRnb( UCS ,2.0 ,"" ,"Coulomb scattering parameter" )
`MPRnb( LUCS ,0.0 ,"m" ,"Length dependence of UCS" )
`MPRnb( WUCS ,0.0 ,"m" ,"Width dependence of UCS" )
`MPRnb( PUCS ,0.0 ,"m^2" ,"Area dependence of UCS" )
`MPRnb( UCSR ,UCS ,"" ,"Reverse-mode Coulomb scattering parameter" )
`MPRnb( LUCSR ,LUCS ,"m" ,"Length dependence of UCSR" )
`MPRnb( WUCSR ,WUCS ,"m" ,"Width dependence of UCSR" )
`MPRnb( PUCSR ,PUCS ,"m^2" ,"Area dependence of UCSR" )
`MPRnb( UC ,0.0 ,"(m/V)^EU/V" ,"Mobility reduction with body bias" )
`MPRnb( UCL ,0.0 ,"m^UCLEXP" ,"Length dependence coefficient of UC" )