-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathembeddings.py
78 lines (58 loc) · 2.32 KB
/
embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# open ai
# ---
# from langchain.document_loaders import DirectoryLoader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain.document_loaders import TextLoader
# from langchain.document_loaders import PyMuPDFLoader, PDFMinerLoader
# from langchain.embeddings.openai import OpenAIEmbeddings
# from langchain.text_splitter import CharacterTextSplitter
# from langchain.vectorstores import FAISS
# from langchain.storage import LocalFileStore
# from langchain.embeddings import OpenAIEmbeddings, CacheBackedEmbeddings
# from dotenv import load_dotenv
# load_dotenv()
# underlying_embeddings = OpenAIEmbeddings(request_timeout=15,
# show_progress_bar=True)
# fs = LocalFileStore("./cache/")
# cached_embedder = CacheBackedEmbeddings.from_bytes_store(
# underlying_embeddings, fs, namespace=underlying_embeddings.model
# )
# loader = PyMuPDFLoader('../DOCS/IRC/IRC_CODES.pdf')
# documents = loader.load()
# print(len(documents))
# text_splitter = RecursiveCharacterTextSplitter(
# chunk_size=1000, chunk_overlap=100)
# docs = text_splitter.split_documents(documents)
# db = FAISS.from_documents(docs, cached_embedder)
# db.save_local("TAXGPT_IRC_FAISS")
# query = "How to qualify for section 179?"
# docs = db.similarity_search(query)
# print(docs[0].page_content)
# hugging face
# ---
# from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.document_loaders import PyMuPDFLoader
from langchain.vectorstores import FAISS
from dotenv import load_dotenv
from langchain.embeddings import HuggingFaceBgeEmbeddings
load_dotenv()
model_name = "BAAI/bge-large-en"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}
embeddings = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
loader = PyMuPDFLoader("whitepaper.pdf")
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, chunk_overlap=100)
docs = text_splitter.split_documents(documents)
db = FAISS.from_documents(docs, embeddings)
db.save_local("test_faiss")
# query = "what is safety in pretraining?"
# docs = db.similarity_search(query)
# print(docs[0].page_content)