-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESCRIPTION
40 lines (40 loc) · 882 Bytes
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Package: propensityml
Title: Propensity score weighting using machine learning methods
Version: 0.0.0.9000
Authors@R:
person(given = "Young Geun",
family = "Kim",
role = c("aut", "cre"),
email = "dudrmshub@gmail.com")
Maintainer: Young-geun Kim <dudrms33@g.skku.edu>
Description: Implement machine learning models to improve propensity score weight,
especially tree models, e.g.
CART, pruned CART, random forests, etc.
License: MIT + file LICENSE
URL: https://github.com/ygeunkim
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.1.1
Imports:
stats,
magrittr,
data.table,
Matrix,
tibble,
dplyr,
randomForest,
rpart,
e1071,
stringr,
mvtnorm,
methods,
rlang,
ggplot2,
foreach,
parallel
Depends:
R (>= 2.10)
Suggests:
testthat,
covr