Skip to content
This repository has been archived by the owner on Aug 6, 2021. It is now read-only.

Latest commit

 

History

History
80 lines (57 loc) · 2.18 KB

README.rst

File metadata and controls

80 lines (57 loc) · 2.18 KB

binopt

Documentation Status Updates

This package is aiming to categorize labeled data in terms of a global figure of merit. In high energy physics, categorization of collision data is done by maximizing the discovery significance. This package run on unbinned binary datasets.

installation

Install like any other python package:

pip install binopt --user

or:

git clone git@github.com:yhaddad/binopt.git
cd binopt/
pip install .

Getting started

sevent = 1000
bevent = 10000
X = np.concatenate((
             expit(np.random.normal(+2.0, 2.0, sevent)),
             expit(np.random.normal(-0.5, 2.0, bevent))
))
Y = np.concatenate((
             np.ones(sevent),
             np.zeros(bevent)
))
W = np.concatenate((np.ones(sevent), np.ones(bevent)))

binner = binopt.optimize_bin(
             nbins=3, range=[0, 1],
             drop_last_bin=True,
             fix_upper=True,
             fix_lower=False,
             use_kde_density=True
)
opt = binner.fit(
             X, Y, sample_weights=W,
             method="Nelder-Mead",
             breg=None, fom="AMS2"
)

print "bounds : ", opt.x
print "signif : ", binner.binned_score(opt.x)
print "Nsig   : ", binner.binned_stats(opt.x)[0]
print "Nbkg   : ", binner.binned_stats(opt.x)[1]